Autonomous Scheduling for Rapid Responsive Launch of Constellations

Proposal Defense

Proposer/Presenter: Christopher R. Simpson

Agenda

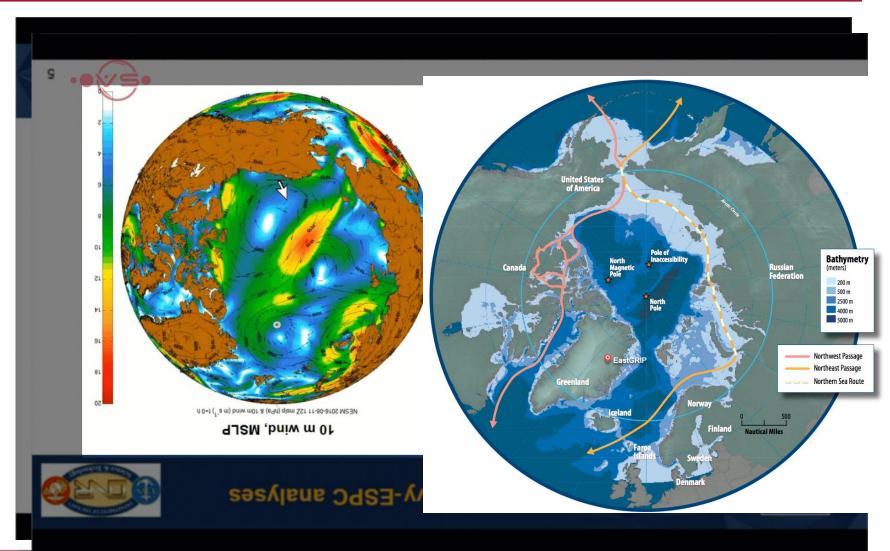
- Motivation for rapid launch
 - Support rapid ISR collection and dissemination
- Objectives
 - Optimized scheduling of airborne launch vehicles
- Quantification
 - Response time and quality coverage
- Plan of attack
 - Incorporate quality metrics into software package
- Schedule

Support rapid ISR collection and dissemination

MOTIVATION

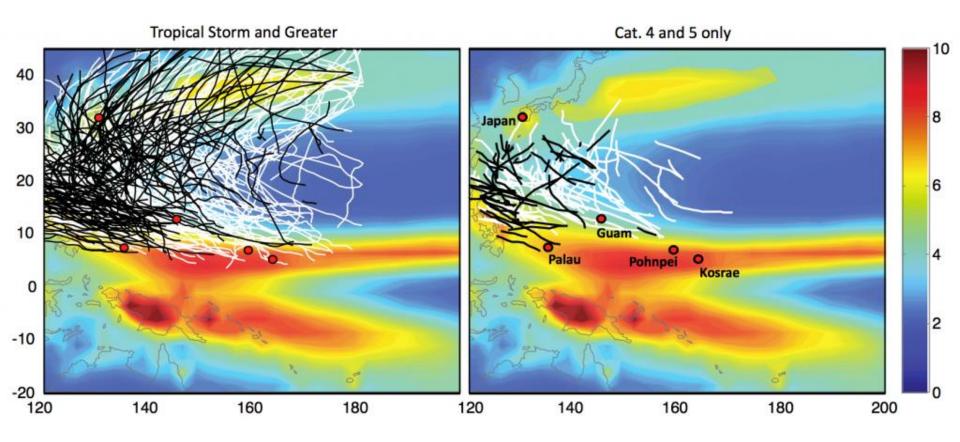
Motivation (1/5)

- Government/Military Responsive Space
 - USSOCOM 19.3 SBIR 2019
 - Nanosatellite, 1-10 kg, payloads for ISR
 - Rapid collection and dissemination of actionable data
 - CONOPS of user in theatre issue ISR request to constellation
 - Dependency on space domain
 - Operation Desert Storm or "First Space War"
 - GPS/PNT reliance
 - Problems facing large constellations
 - Launch services demands
 - Constellation replenishment scheduling
 - Fixed terrestrial launches easily tracked
 - Denial of space-based resources
 - EW, Cyber, ASAT



Motivation (2/5)

- Physically remote/extreme science return
 - Support science return from ice sheet, snow pack, and soil moisture measurements
 - Hazardous conditions can pose threats to scientific and remote missions
 - Also poses threat to Navy maritime operations and national security
- Arctic Cyclones
 - Two Great Arctic Cyclones (2012 & 2016)
 - Each only predicted 72 hours beforehand
 - Co-located with rapid sea ice loss events
 - Pose hazardous weather, sea, and ice conditions
- Tropical Cyclones in NW Pacific Ocean
 - Most active cyclone basin on planet
 - Affected include China, Hong Kong, Japan, Korea, Phillipines, Taiwan,
 Guam, American Samoa, Singapore, and other Oceanian islands



Motivation (3/5)

Motivation (4/5)

Motivation (5/5)

Disaster response

- Puerto Rico Earthquakes
 - Culminates on 7 Jan 2020 with 6.4 magnitude
 - Small quakes starting 28 Dec 2019
 - C-band SAR and optical used for mapping, imagery, and analysis
 - Identifying damaged structures, surface displacement, and possible landslides
 - Sentinel-1, Maxar Technologies, and Planet

Hurricanes/Flood monitoring

- CYGNSS measures wind speeds in cyclones through GNSS reflectometry.
 - Can also monitor soil moisture and provide flood detection
 - RMS between CYGNSS and SMAP is 0.045 cm³/cm³
- Spire Global launched two 3U CubeSats based on CYGNSS success
 - Operational as of 2 Jan 2020

Illustration of CYGNSS satellites tracking multiple Earth ocean and land reflections. The transmitters are those of the GPS constellation 20,000 km above the Earth.

₩UCAR

Optimized scheduling of airborne launch vehicles

OBJECTIVES

Objectives - Use the motivation

- Taiping Island coverage requested
 - $-t_{RT} < 2 \text{ hr, } E\left[\frac{\Sigma G_t^2}{\Lambda t}\right] = 0, \max(G_t) = 0, C_{per} = 1.00$
 - 8 available satellites
 - Maxwell AFB/ HMS Queen Elizabeth/ Pearl Harbor/ Ørland Air Base
- Northern Sea Route coverage requested

$$-t_{RT} < 8 \text{ hr, } E\left[\frac{\Sigma G_t^2}{\Delta t}\right] = 1 \text{ hr, } \max(G_t) = 3 \text{ hr, } C_{per} = 0.80$$

- 4 available satellites
 - MCAS Iwakuni/ HMS Queen Elizabeth
- Tropical cyclone near Marshall Islands

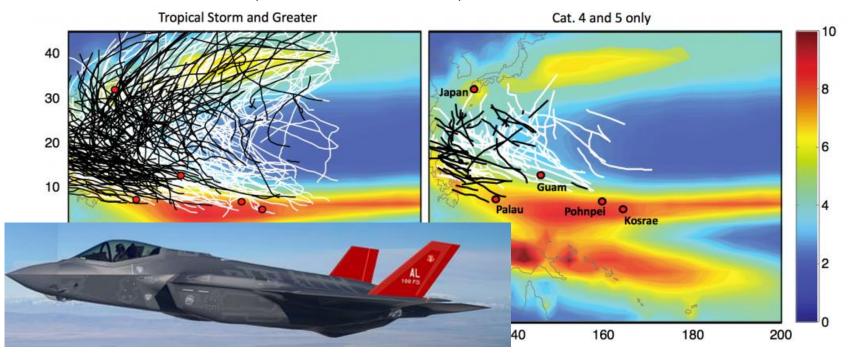
$$-t_{RT} < 4$$
 hr, $E\left[\frac{\Sigma G_t^2}{\Delta t}\right] = 3$ hr, $\max(G_t) = 6$ hr, $C_{per} = 1.00$

- 6 available satellites
 - Maxwell AFB/NAWCWD Point Mugu/ Pearl Harbor

Objectives - Case #1

- Taiping Island coverage requested
 - $-t_{RT} < 2$ hr, $E\left[\frac{\Sigma G_t^2}{\Lambda t}\right] = 0$, $\max(G_t) = 0$, $C_{per} = 1.00$
 - 8 available satellites
 - Maxwell AFB/ HMS Queen Elizabeth/ Pearl Harbor/ Ørland Air Base

Objectives – Case #2


- Northern Sea Route coverage requested
 - t_{RT} < 8 hr, $E\left[\frac{\Sigma G_t^2}{\Delta t}\right]$ = 1 hr, $\max(G_t)$ = 3 hr, C_{per} = 0.80
 - 4 available satellites
 - MCAS Iwakuni/ HMS Queen Elizabeth

Objectives - Case #3

- Tropical cyclone near Marshall Islands
 - $t_{RT} < 4$ hr, $E\left[\frac{\Sigma G_t^2}{\Delta t}\right] = 3$ hr, $\max(G_t) = 6$ hr, $C_{per} = 1.00$
 - 6 available satellites
 - Maxwell AFB/NAWCWD Point Mugu/ Pearl Harbor

Response time and quality coverage

QUANTIFICATION

Quantification – Response Time (1/3)

Minimize response time

$$\begin{split} E[t_{RT}] &= E\big[t_{tasking} + t_{a/c} + t_{LV} + t_{sat} + t_{downlink}\big] \\ \min(E[t_{RT}]) &= E\big[t_{a/c} + t_{LV}\big] + \min(E[t_{sat} + t_{downlink}]) \end{split}$$

- Assumptions
 - Tasking time, $t_{tasking}$, is fixed
 - An ATO has been received
 - Execution planning and force execution stage (30 min)
 - Loadout and flight time to drop point, $t_{a/c}$, is fixed for each site
 - No holds on launch
 - Flight profile dependent on a/c launch point
 - Airborne launch vehicle flight time, t_{LV} , varies from 3-5 min
 - Dependent upon orbit injection altitude (200-300 km apogee)
 - Improving on 3-5 min of LV flight time is a design problem (out of scope)
 - Nanosatellite has no thrust capability

Quantification – Response Time (2/3)

Assumptions for launch vehicle

- Airborne launch vehicle flight time, t_{LV} , varies from 3-5 min
 - Dependent upon orbit injection altitude (200-300 km apogee)
 - Improving on 3-5 min of LV flight time is a design problem (out of scope)
 - TOF to 200 km using Pegasus XL flight data
 - Some inaccuracy because still performing g-turn
- Using AIM-120 dimensions
 - Payload of 1-10 kg (nanosatellite)
- $-\Delta V$ cost met using two stage SP-1a/LOX

1		1	1	Nozzle	Dia (m)		1	1	1	1	<u> </u>	1	[
Motor	Length (m)	Case Dia (m)) Segments	Throat	Exit	Prop (kg)	Ins (kg)	Case (kg)	Nozzle (kg)	Igniter (kg)	Misc. (kg)	Total (kg)	f_{prop}	f_{inert}	f_{pay}
SP-1a/LOX	1.8288	0.18	ر 1	0.0889	0.18	38.371	0.8368	1.7289	0.7428	0.0287	0.0663	41.77413	0.918526	0.081474	0.239383
SP-1a/LOX	0.8950	0.18	ر 1	0.0889	0.18	18.777	0.4694	0.8283	0.7371	0.0329	0.0615	20.90661	0.898156	0.101844	0.478318
	<u> </u>		7										<u> </u>		
												'			
1		Pc (max)			F _v (Avg)			ΔV_{amraam}	$\Delta V_{\text{req}} (\text{m/s})$		Value				
Motor	Pc (Mpa)	(Mpa)	ϵ_0	tb (s)	(kN)	$I_{sp,v}(s)$	I (N-s)	(m/s)	(Ideal)	Feasible	Check	Feasibility	y condition	for motor	
SP-1a/LOX	5.84	7.38	35.2	72.4	488.9	372	140026.714	4931.60	5110.0036	TRUE	0.6695206		$\frac{\Delta^{1}}{L}$	7	
SP-1a/LOX	5.83	6.76	50.3	73.3	118.4	372.0	68524.6993	3413.40	3235.1731	TRUE	0.5868923	1 -	f _{inert} e 'sp!	$y_0 \leq 0$	
								8345.00	8345.18						
	SP-1a/LOX SP-1a/LOX Motor SP-1a/LOX	SP-1a/LOX 1.8288 SP-1a/LOX 0.8950	SP-1a/LOX 1.8288 0.18 SP-1a/LOX 0.8950 0.18 Motor Pc (Mpa) Pc (max) SP-1a/LOX 5.84 7.38	SP-1a/LOX 1.8288 0.18 1	Motor Length (m) Case Dia (m) Segments Throat	SP-1a/LOX 1.8288 0.18 1 0.0889 0.18 SP-1a/LOX 0.8950 0.18 1 0.0889 0.18	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Motor Length (m) Case Dia (m) Segments Throat Exit Prop (kg) Ins (kg) SP-1a/LOX 1.8288 0.18 1 0.0889 0.18 38.371 0.8368 SP-1a/LOX 0.8950 0.18 1 0.0889 0.18 18.777 0.4694 Motor Pc (Mpa) (Mpa) ε₀ tb (s) (kN) I _{sp,v} (s) I (N-s) SP-1a/LOX 5.84 7.38 35.2 72.4 488.9 372 140026.714	Motor Length (m) Case Dia (m) Segments Throat Exit Prop (kg) Ins (kg) Case (kg) SP-1a/LOX 1.8288 0.18 1 0.0889 0.18 38.371 0.8368 1.7289 SP-1a/LOX 0.8950 0.18 1 0.0889 0.18 18.777 0.4694 0.8283 Motor Pc (max) F _v (Avg) Image: Company (Mpa) AV _{amraam} (m/s) SP-1a/LOX 5.84 7.38 35.2 72.4 488.9 372 140026.714 4931.60 SP-1a/LOX 5.83 6.76 50.3 73.3 118.4 372.0 68524.6993 3413.40	Motor Length (m) Case Dia (m) Segments Throat Exit Prop (kg) Ins (kg) Case (kg) Nozzle (kg) SP-1a/LOX 1.8288 0.18 1 0.0889 0.18 38.371 0.8368 1.7289 0.7428 SP-1a/LOX 0.8950 0.18 1 0.0889 0.18 18.777 0.4694 0.8283 0.7371 Motor Pc (max) F _V (Avg) AV _{amraam} ΔV _{req} (m/s) (Ideal) SP-1a/LOX 5.84 7.38 35.2 72.4 488.9 372 140026.714 4931.60 5110.0036 SP-1a/LOX 5.83 6.76 50.3 73.3 118.4 372.0 68524.6993 3413.40 3235.1731	Motor Length (m) Case Dia (m) Segments Throat Exit Prop (kg) Ins (kg) Case (kg) Nozzle (kg) Igniter (kg) SP-1a/LOX 1.8288 0.18 1 0.0889 0.18 38.371 0.8368 1.7289 0.7428 0.0287 SP-1a/LOX 0.8950 0.18 1 0.0889 0.18 18.777 0.4694 0.8283 0.7371 0.0329 Motor Pc (max) Fv (Avg) Fv (Avg) AVanraam ΔVreq (m/s) (Ideal) Feasible SP-1a/LOX 5.84 7.38 35.2 72.4 488.9 372 140026.714 4931.60 5110.0036 TRUE SP-1a/LOX 5.83 6.76 50.3 73.3 118.4 372.0 68524.6993 3413.40 3235.1731 TRUE	Motor Length (m) Case Dia (m) Segments Throat Exit Prop (kg) Ins (kg) Case (kg) Nozzle (kg) Igniter (kg) Misc. (kg) SP-1a/LOX 1.8288 0.18 1 0.0889 0.18 38.371 0.8368 1.7289 0.7428 0.0287 0.0663 SP-1a/LOX 0.8950 0.18 1 0.0889 0.18 18.777 0.4694 0.8283 0.7371 0.0329 0.0615 Motor Pc (max) Fv (Avg) Fv (Avg) AVanraam ΔVreq (m/s) Value SP-1a/LOX 5.84 7.38 35.2 72.4 488.9 372 140026.714 4931.60 5110.0036 TRUE 0.6695206 SP-1a/LOX 5.83 6.76 50.3 73.3 118.4 372.0 68524.6993 3413.40 3235.1731 TRUE 0.5868923	Motor Length (m) Case Dia (m) Segments Throat Exit Prop (kg) Ins (kg) Case (kg) Nozzle (kg) Igniter (kg) Misc. (kg) Total (kg) SP-1a/LOX 1.8288 0.18 1 0.0889 0.18 38.371 0.8368 1.7289 0.7428 0.0287 0.0663 41.77413 SP-1a/LOX 0.8950 0.18 1 0.0889 0.18 18.777 0.4694 0.8283 0.7371 0.0329 0.0615 20.90661	Motor Length (m) Case Dia (m) Segments Throat Exit Prop (kg) Ins (kg) Case (kg) Nozzle (kg) Igniter (kg) Misc. (kg) Total (kg) f_{prop} SP-1a/LOX 1.8288 0.18 1 0.0889 0.18 38.371 0.8368 1.7289 0.7428 0.0287 0.0663 41.77413 0.918526 SP-1a/LOX 0.8950 0.18 1 0.0889 0.18 18.777 0.4694 0.8283 0.7371 0.0329 0.0615 20.90661 0.898156 Motor Pc (max) Fv (Avg) Fv (Avg) AVamraam ΔVreq (m/s) Value Value <td< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></td<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Quantification – Response Time (2/3)

- Assumptions for launch vehicle
 - Airborne launch vehicle flight time, t_{LV} , varies from 3-5 min
 - Dependent upon orbit injection altitude (200-300 km apogee)
 - Improving on 3-5 min of LV flight time is a design problem (out of scope)
 - TOF to 200 km using Pegasus XL flight data
 - Some inaccuracy because still performing g-turn
 - Using AIM-120 dimensions
 - Payload of 1-10 kg (nanosatellite)
 - $-\Delta V$ cost met using two stage SP-1a/LOX

		1														
					Nozzle	Dia (m)										
Stage	Motor	Length (m)	Case Dia (m)	Segments	Throat	Exit	Prop (kg)	Ins (kg)	Case (kg)	Nozzle (kg)	Igniter (kg)	Misc. (kg)	Total (kg)	f_{prop}	finert	f _{pay}
Stage 1	SP-1a/LOX	1.8288	0.18	1	0.0889	0.18	38.371	0.8368	1.7289	0.7428	0.0287	0.0663	41.77413	0.918526	0.081474	0.239383
Stage 2	SP-1a/LOX	0.8950	0.18	1	0.0889	0.18	18.777	0.4694	0.8283	0.7371	0.0329	0.0615	20.90661	0.898156	0.101844	0.478318
			Pc (max)			F _v (Avg)			ΔV_{amraam}	$\Delta V_{req} (m/s)$		Value				
Stage	Motor	Pc (Mpa)	(Mpa)	ϵ_0	tb (s)	(kN)	$I_{sp,v}(s)$	I (N-s)	(m/s)	(Ideal)	Feasible	Check	Feasibility	condition	for motor	
Stage 1	SP-1a/LOX	5.84	7.38	35.2	72.4	488.9	372	140026.714	4931.60	5110.0036	TRUE	0.6695206		$\frac{\Delta I}{I}$	7	
Stage 2	SP-1a/LOX	5.83	6.76	50.3	73.3	118.4	372.0	68524.6993	3413.40	3235.1731	TRUE	0.5868923	1-	f _{inert} e ^{I_{sp}g}	90 ≤ 0	
									8345.00	8345.18						

Quantification – Response Time (3/3)

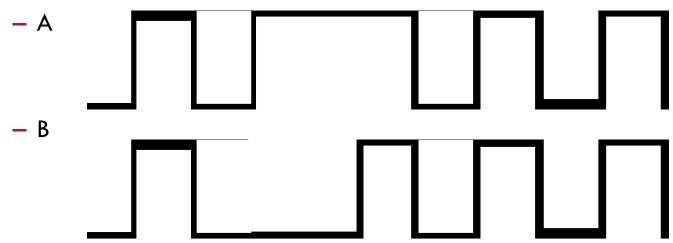
Minimize response time

$$\min(E[t_{sat} + t_{downlink}])$$

- Orbital mechanics and field of regard (access area)
 - Time from satellite injection until first light (view) of target, t_{sat}
 - Launching directly towards target will be shortest TOF
 - Works great for targets with ground station at target
 - Time from view/data collection until downlink, $t_{downlink}$
 - If ground station collocated with target, $t_{downlink}=0$
 - Earliest Arrival Time at Destination (EATD)
 - Used if ground station not collocated with target
 - Only certain orbits would be admissible

Quantification – Quality of Coverage (1/3)

Quantification – Quality of Coverage (2/3)


Quality of coverage constraint

$$Q = \left[-\eta_0 E \left[\frac{\Sigma G_t^2}{\Delta t} \right] - \eta_1 \max(G_t) + \eta_2 C_{per} \right] - E[t_{RT}]$$

- Time-Averaged Gap (TAG)
 - TAG, $E\left[\frac{\Sigma G_t^2}{\Delta t}\right]$, is the mean gap duration averaged over time
 - Best measurement of quality besides MRT
- Maximum gap duration
 - Maximum gap, $\max(G_t)$, is the longest gap duration in the window
- Percent coverage, C_{per}
 - Number of times a point is covered divided by number of time steps

Quantification – Quality of Coverage (3/3)

Example calculation (10 time steps, GS collocated)

	Percent Coverage	Max Gap	Mean Gap	TAG	MRT	RT
Α	60%	1	1	0.4	0.4	1
В	40%	3	1.5	1.2	0.6	1

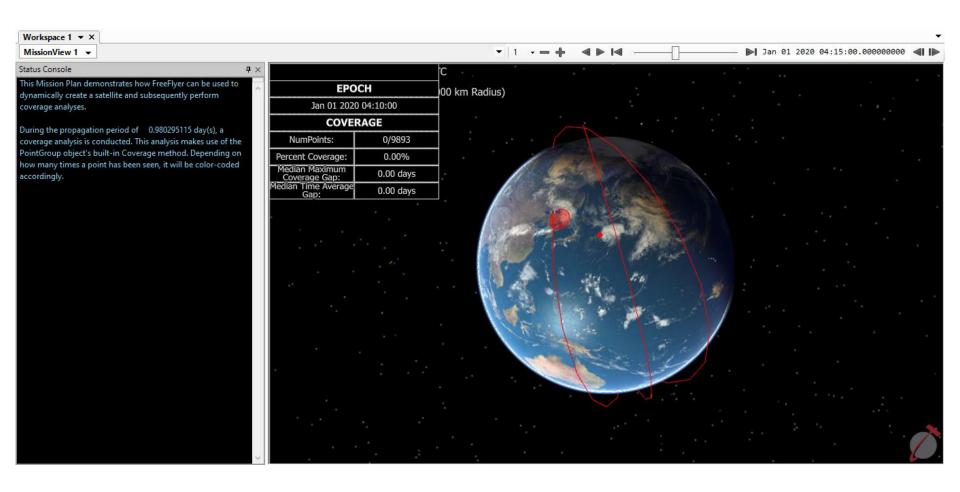
Incorporate quality metrics into software package

PLAN OF ATTACK

Plan of Attack – Incorporate metrics (1/4)

- Software packages
 - Combine a high-fidelity flight dynamics package with an available optimization package
 - FreeFlyer, flight dynamics from a.i. solutions, Inc.
 - CPLEX Optimization Studio from IBM
 - Provide constrained solutions to FreeFlyer
- FreeFlyer supports spacecraft operations
 - Used in modeling and real operations
 - ISS at Johnson Space Center
 - James Webb Flight Dynamics Team
 - MMS
 - Restore-L mission
 - APIs for Python, C#, C++ scripting
 - Often scripting done in program
 - Connects to MATLAB

Plan of Attack – Incorporate metrics (2/4)


Demonstration of time-limited solution

Plan of Attack – Incorporate metrics (3/4)

- CPLEX Optimization Studio from IBM
 - Integer programming
 - Very large linear problems
 - Convex and non-convex quadratic programming
 - Convex quadratically constrained problems
 - APIs for Python, C#, C++
 - Connectors to MATLAB and Excel

Plan of Attack – Incorporate metrics (4/4)

Estimated time to complete and defend

SCHEDULE

Schedule - Orbits and Constellations

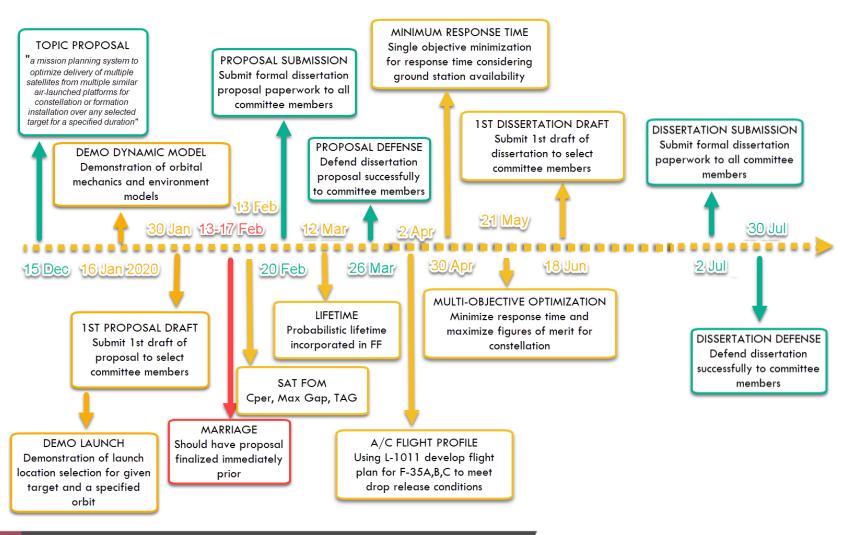
- Orbital Mechanics
 - Develop or procure software that will incorporate satellite dynamics with a high degree of fidelity
 - 16 Jan 2020 COMPLETED
- Satellite Coverage Figures of Merit
 - Percent Coverage COMPLETED
 - Maximum Gap Duration COMPLETED
 - Time-Averaged Gap
 - 13 Feb 2020 BEHIND SCHEDULE
- Satellite Lifetime (i.e. Mission Lifetime)
 - Perturbation effects at injection altitude
 - Directly dependent upon launch vehicle flight profile
 - The lower the altitude of the orbit the sooner the satellites will deorbit
 - 12 Mar 2020 BEHIND SCHEDULE

Schedule – Airborne Launch Vehicles (1/2)

- Flight profile of current airborne launch vehicles
 - Determine the ΔV cost of Pegasus XL and LauncherOne for LEO injections
 - 30 Jan 2020 COMPLETED
- Carrier aircraft flight profile
 - Use the L-1011 flight plan during a Pegasus XL launch to develop a flight plan for an F-35C
 - Release conditions of drop
 - Use the max speed of the F-35C
 - At similar altitude of L-1011
 - 2 Apr 2020 ON SCHEDULE

Schedule – Airborne Launch Vehicles (2/2)

- Lambert targeting
 - Write a script to determine the ΔV cost of an AMRAAM to direct injection
 - Dropped at max speed of F-35C
 - Similar altitude of L-1011
 - 30 Jan 2020 COMPLETED
- Estimated flight profile for AMRAAM type
 - Use flight profile of Pegasus XL and LauncherOne
 - Use estimated propellant stored to determine capabilities
 - Find max altitude capable
 - Compare ΔV from estimated profile and Lambert Targeting
 - 30 Jan 2020 COMPLETED


Schedule - Agile Launch

- Considering $min(t_{RT})$
 - Single objective optimization for $\min(t_{RT})$
 - Consider communications at point or at another target location
 - Show EATD has or does not have applications formulated as MILP
 - 2 Apr 2020 ON SCHEDULE
- Multi-objective optimization
 - Minimize response time and maximize FOM

$$- Q = \left[-\eta_0 E \left[\frac{\Sigma G_t^2}{\Delta t} \right] - \eta_1 \max(G_t) + \eta_2 C_{per} \right] - E[t_{RT}]$$

- Show whether EATD/TSP with prizes have applications as MILP
- 30 Apr 2020 ON SCHEDULE

Schedule

Autonomous scheduling for rapid responsive launch

SUMMARY

Summary – Technical Approach (1/4)

Minimize response time

$$E[t_{RT}] = E[t_{tasking} + t_{a/c} + t_{LV} + t_{sat} + t_{downlink}]$$

$$\min(E[t_{RT}]) = E[t_{tasking} + t_{a/c} + t_{LV}] + \min(E[t_{sat} + t_{downlink}])$$

Minimize response time with quality of coverage constraints

$$Q = \left[-\eta_0 E \left[\frac{\Sigma G_t^2}{\Delta t} \right] - \eta_1 \max(G_t) + \eta_2 C_{per} \right] - E[t_{RT}]$$

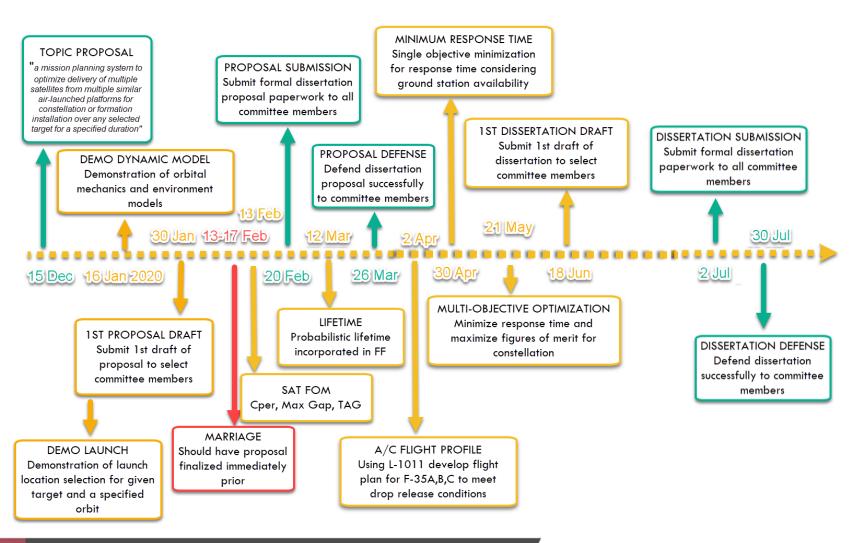
- Software packages
 - Combine a high-fidelity flight dynamics package with an available optimization package
 - FreeFlyer, flight dynamics from a.i. solutions, Inc.
 - CPLEX Optimization Studio from IBM

Summary – Objective (2/4)

- Minimize response time to under an hour
 - This includes tasking to downlink of the request
- Maximize quality of coverage
 - Minimize TAG, $E\left[\frac{\Sigma G_t^2}{\Delta t}\right]$, max gap, $\max(G_t)$, and response time, $E[t_{RT}]$
 - Maximize percent coverage, \mathcal{C}_{per}

Summary – Objective (3/4)

- Taiping Island coverage requested
 - $-t_{RT} < 2 \text{ hr, } E\left[\frac{\Sigma G_t^2}{\Lambda t}\right] = 0, \max(G_t) = 0, C_{per} = 1.00$
 - 8 available satellites
 - Maxwell AFB/ HMS Queen Elizabeth/ Pearl Harbor/ Ørland Air Base
- Northern Sea Route coverage requested


$$-t_{RT} < 8 \text{ hr, } E\left[\frac{\Sigma G_t^2}{\Delta t}\right] = 1 \text{ hr, } \max(G_t) = 3 \text{ hr, } C_{per} = 0.80$$

- 4 available satellites
 - MCAS Iwakuni/ HMS Queen Elizabeth
- Tropical cyclone near Marshall Islands

$$-t_{RT} < 4$$
 hr, $E\left[\frac{\Sigma G_t^2}{\Delta t}\right] = 3$ hr, $\max(G_t) = 6$ hr, $C_{per} = 1.00$

- 6 available satellites
 - Maxwell AFB/NAWCWD Point Mugu/ Pearl Harbor

Summary – Schedule (4/4)

