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Introduction

• Welcome!
– Class Schedule: MWF

– Non-traditional syllabus available here

• Working through material
– If you have a question, leave it on the lecture page on my 

website or YouTube page
– I would like to encourage discussion among those of you 

working through the material
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Agenda

• Overview
– Inherent characteristics of OD problem

• Dynamic System
– Dynamic state estimation

– Uniform gravitational field example

– Observations
– Non-linear functions of state variables

– Linearization
– State transition matrix

• Example Problem
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Overview – Obtain Knowledge

• Orbit Determination is
– The process by which we obtain knowledge of satellite 

motion
– “The problem of determining the best estimate of the state of a spacecraft 

whose initial state is unknown, from observations influenced by random and 
systematic errors, using a mathematical model that is not exact, is … the 
problem of state estimation,” or orbit determination [1]

• Let the astronomers focus on the heavenly bodies
– We will focus on artificial (noncelestial) satellites
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Overview – Characteristics

• Dynamic state estimation
– Set of parameters required to predict future motion
– Initially, just position and velocity vectors
– Later, we will include dynamic and measurement model 

parameters

• Best estimate
– Truth of observation and reported state

5



Overview – Estimates 

• “Generating an ephemeris,” is predicting the state of a vehicle
– An ephemeris is a table of position and velocity as function of time

• Predicted values differ from true values for 2 reasons

• 1. Inaccuracies in estimated state vector
– Approximations in model and method of orbit propagation
– Errors in observations
– Errors in computational procedures

• 2. Errors in numerical integration
– Caused by dynamical model and roundoff errors and truncation
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Dynamic System – Estimates (1/2)

• Inaccuracies in estimate and errors in numerical integration

• Review probability, statistics and matrix theory
– See Appendix A and B or notes on the appendices

• Will use a uniform gravitational field to illustrate OD process
– True trajectory, 
– Nominal trajectory, ∗

– (Best) Estimate trajectory, 

• is our state vector
– Observations
– Location of Observations
– Estimate method
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Dynamic System – Estimates (2/2)
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Dynamic System – Observing (1/3)

• Updating is inherently linear
–

– Ex: 

• Cannot observe individual state components directly

• Observations are non-linear
– Range, , range-rate, , elevation, , elevation-rate, , etc.

–

–

–

–
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Dynamic System – Observing (2/3)

• Transforming observations into the best estimate

• is our observations and is a 4x1 nonlinear vector from the 
equations in the previous slide

• Best estimate
– Solve using Newton-Raphson iteration

– Iteration is repeated until 

• Since equations are nonlinear, multiple solutions may exist
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Dynamic System – Observing (3/3)

• Not all observation information may be available
– Range and elevation but not range-rate nor elevation rate

• will be insufficient to determine 
– Two observations at different times will be required
– The set is sufficient

• Both approaches assume
– Perfect knowledge of governing diff. eqns
– Perfect observations

• In general many observations will be taken
– This will decrease variance and eliminate random/systematic errors
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Dynamic System – Linearization (1/4)

• Best estimate is obtained by linearizing the problem
– Expand equations of motion
– Expand observation-state relationship about a reference trajectory

• Deviations from reference are determined for best-fit
– Minimize variance to yield best agreement with observations
– Generally based on least-squares criterion
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Dynamic System – Linearization (2/4)

• Using the flat-earth example in the previous slide
– Assume errors in initial position, velocity, and in values
– ∗ or the nominal plus the perturbed state

– Perturbed means deviation (simplistically) in this case

• Write a state vector, subtracting the nominal
– ∗

–

–

–

–
–
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Dynamic System – Linearization (3/4)

• Observations becoming linear
– Observations linearized by expanding in Taylor series about ∗

– ∗
∗

∗
∗

∗

– ∗
∗

∗
∗

∗

–
–

• Rewriting

–
∗ ∗

–
∗ ∗
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Dynamic System – Linearization (4/4)

• Determining the deviation from the nominal trajectory
– We have linearized the system
– We can now use linear algebra to our advantage

–
– is the mapping vector of partial derivatives with respect to ∗

–

–

• Think about it: How can you use this? Why is this valuable?

15



Dynamic System – State Transition Matrix (1/2)

• The state transition matrix ( ) updates the deviation vector
–
– In other words, maps deviations in the state vector from one time to 

another

• Classical orbit determination the mapping is exact

• General orbit determination
– State equations are nonlinear
– is the linear term in a Taylor series expansion of at 
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Dynamic System – State Transition Matrix (2/2)

• maps to 
–

• Given an arbitrary epoch, 
– We can determine the best estimate of using the deviations
– will be a vector

– is the number of state variables

– is the number of observations

– In general OD is always satisfied
– In classical OD 

• We will cover how to use these extra observations later
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SIMPLE DYNAMIC SYSTEM
Practice Problem: Uniform Gravitational Field (2D)



Simple Dynamic System – Problem Definition

Given perturbed initial conditions, use a Newton iteration scheme to recover the 
exact initial conditions or conditions used to produce the observations provided. 
Assume the ground station coordinates are correct.

• Write a computer program that computes 
– 2D uniform gravity field

• Compute observations from given initial conditions

• Iterate and solve for the correct initial conditions

•

•
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