

Statistical Orbit Determination

Lecture 2 – Orbital Mechanics Review A Presenter: Christopher R. Simpson

Recap

- Lecture 1 OD Concepts posted <u>here</u>
 - State estimation (what orbit determination is)
 - Linearization and state transition matrix
- Problem due Wed, 13 June
 - Quick review at beginning of this lecture
- Questions
 - Post them to lecture page
- Additional notes
 - Website revamp

Agenda

- Problem review
- Two body problem
 - Gravitational force
 - Relative motion
 - n-body problem
- Orbital elements and \vec{r}/\vec{v}
 - Conic sections
 - Coordinate systems
- Perturbing accelerations
 - Conservative
 - Gravitational models
- Practice problem

Time	0.0	1.0	2.0	3.0	4.0
Range, $ ho$	7.000000000	8.003905970	8.944271910	9.801147892	10.630145813
Calculated Range, $\hat{ ho}$	9.013878189	9.73203473	10.6004717	11.5815586	12.66688596
X ₀	1.5	3.7	5.9	8.1	10.3
Y ₀	10.0	10.35	10.4	10.15	9.6
\dot{X}_0	2.2	2.2	2.2	2.2	2.2
Ϋ́ ₀	0.5	0.2	-0.1	-0.4	-0.7
g	0.3	0.3	0.3	0.3	0.3
X _s	1.0	1.0	1.0	1.0	1.0
Y _s	1.0	1.0	1.0	1.0	1.0

Two body problem – Gravitational Force (1/2)

Newton's Law of Universal Gravitation

$$\vec{F} = -\frac{GmM}{r^2}\frac{\vec{r}}{r}$$

Assumptions

- Two point masses/bodies are spherically symmetric
- Gravitational force propagates instantaneously (No relativistic effects)
- Only forces in the system are the gravitational attractions
- Gravitational constant, $G = 6.6742 \times 10^{-20} \frac{\text{km}^3}{\text{kg}-\text{s}^2}$
- Earth's estimated mass, $M_{\oplus} = 5.9722~ imes 10^{24}~{
 m kg}$
- Gravitational parameter, $\mu = M_{\oplus}G = 3.98 \times 10^5 \frac{\text{km}^3}{\text{s}^2}$

Two body problem – Gravitational Force (2/2)

• Gravitational acceleration, g

$$g \equiv \left\|\frac{\vec{F}}{m}\right\| = -\frac{GM}{r^2} = -\frac{\mu}{r^2}$$

- Field acceleration on surface of uniformly dense sphere gives g_0
 - Earth's radius is 6378 km

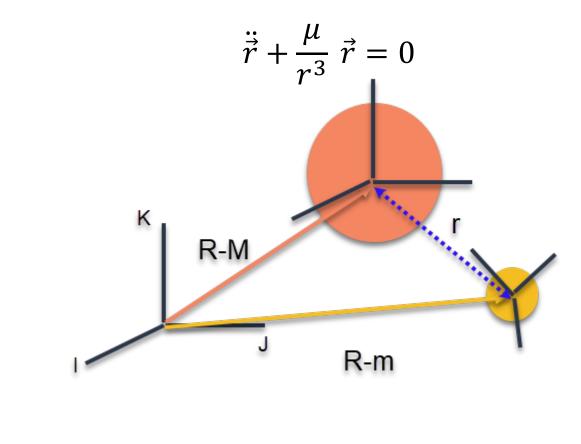
$$g_0 = -\frac{\mu}{r^2} = -\left(\frac{3.98 \times 10^5 \,\frac{\mathrm{km}^3}{\mathrm{s}^2}}{(6378 \,\mathrm{km})^2}\right) \cong -9.81 \,\mathrm{m/s^2}$$

Two body problem – Relative motion

• When $M \gg m$

$$\mu \cong G(M+m) = GM$$

• Acceleration of point mass, m



Two body problem – n-body problem

- Assume a system of n-bodies
 - (m_1, m_2, \dots, m_n) and we want to examine m_i
 - Sum the vectors acting on m_i

$$\vec{F}_{g} = -Gm_{i}\sum_{j=1,j\neq i}^{n} \frac{m_{j}}{r_{ij}^{3}}\vec{r}_{ji}$$

20

Adding all other forces

$$\ddot{\vec{r}}_i = \frac{\vec{F}_g + \vec{F}_{other}}{m_i} - \dot{\vec{r}}_i \left(\frac{\dot{m}_i}{m_i}\right)$$

- Second order, nonlinear, vector, differential equation of motion
 - Not solved in present form

Orbital elements and \vec{r}/\vec{v} – Conic Sections (1/4)

- Gravitational field is conservative
 - Object moving under influence of g only exchanges KE for PE

scal horizonral

local veri

- Specific mechanical energy is constant for each orbit

$$-\varepsilon = \frac{v^2}{2} - \frac{\mu}{r}$$

- Specific angular momentum is constant
 - $-\vec{h}=\vec{r}\times\vec{v}$
 - Position and velocity act only in orbital plane
 - Flight path angle, $\phi = a\cos{\frac{h}{rv}}$

- Zenith angle,
$$\gamma = a \sin \frac{h}{rv}$$

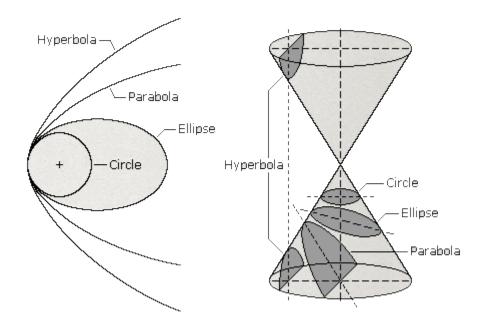
Orbital elements and \vec{r}/\vec{v} – Conic Sections (2/4)

- Conic sections, family of curves, only trajectories for orbit
 - Circle, e = 0, ellipse, 0 < e < 1, parabola, e = 1, hyperbola, e > 1

- In polar coordinates,
$$r = \frac{p}{1+e \cos v}$$

- Semilatus rectum, $p = a (1 - e^2) = h^2/\mu$
- Eccentricity, $e = \sqrt{1 + \frac{2\epsilon h^2}{\mu^2}}$

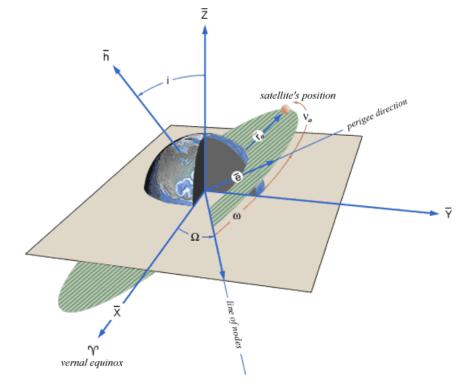
- The focus of the conic orbit is the center of the central body

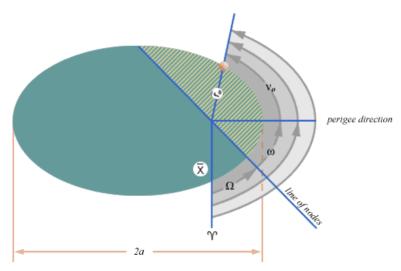


Orbital elements and \vec{r}/\vec{v} – Conic Sections (3/4)

- Six parameters needed to describe an orbit
 - Classical orbital elements
 - *a*, semi-major axis
 - e, eccentricity
 - -i, inclination
 - Ω , longitude of the ascending node
 - ω , argument of periapsis
 - T, time of periapsis passage

Orbital elements and \vec{r}/\vec{v} – Conic Sections (4/4)





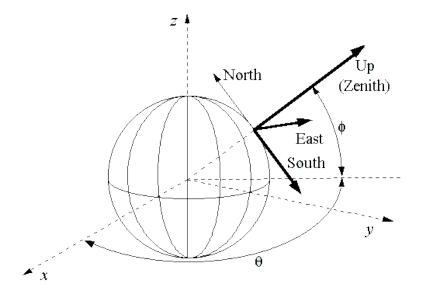
- a defines the size of the orbit
- e defines the shape of the orbit
- i defines the orientation of the orbit with respect to the Earth's equator.
- (D) defines where the low point, perigee, of the orbit is with respect to the Earth's surface.
- Ω defines the location of the ascending and descending orbit locations with respect to the Earth's equatorial plane.
- V defines where the satellite is within the orbit with respect to perigee.

Orbital elements and \vec{r}/\vec{v} – Coordinate Systems (1/2)

- Heliocentric-Ecliptic
 - Origin at center of Sun
 - Fundamental plane is ecliptic or Earth's orbital plane about the Sun
 - Used as inertial reference frame when defined by an epoch
- Geocentric-Equatorial
 - Origin at center of Earth
 - Fundamental plane is equatorial plane
 - Not fixed to Earth
- Right Ascension-Declination
 - Origin at center of Earth or point on surface of Earth
 - Fundamental plane is equatorial plane fixed to the celestial sphere
 - Star positions known accurately, satellite in background

Orbital elements and \vec{r}/\vec{v} – Coordinate Systems (2/2)

- Topocentric-Horizon Coordinate System
 - Fundamental plane is horizon
 - X points South, Y points East, and Z points up



Perturbing accelerations – Conservative (1/2)

• Acceleration of satellite with perturbing accelerations

$$\ddot{\vec{r}} + \frac{\mu}{r^3} \, \vec{r} = \, \ddot{\vec{r}}_p$$

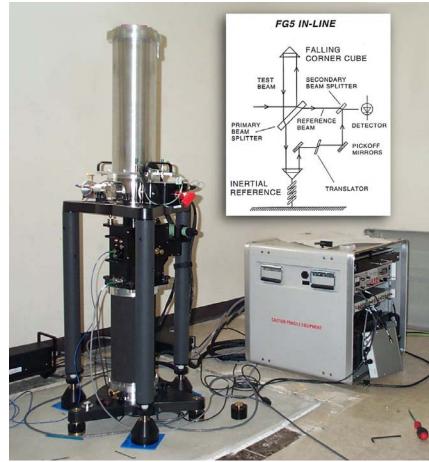
- Perturbations are conservative if only a function of position
 - Satellite does not lose nor gain mechanical energy
 - Exchanges energy between kinetic energy and potential energy
 - Specific mechanical energy is unique for each orbit
- Examples of non-conservative perturbations (changes to $ec{r},ec{v}$)
 - Atmospheric drag
 - Outgassing
 - Tidal effects

Perturbing accelerations – Conservative (2/2)

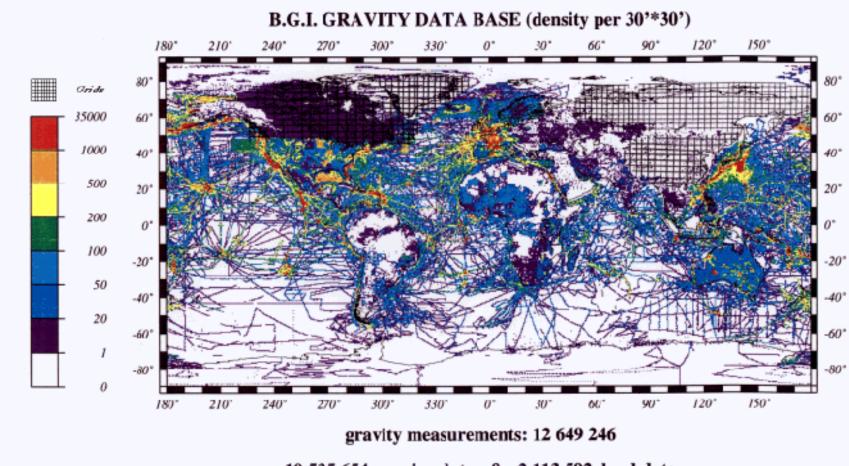
- Examples of conservative perturbations
 - N-body (celestial body) attractions
 - Nonspherical celestial bodies
 - Solar-radiation pressure
- Focus on the gravitational field effects
 - Nonspherical celestial bodies
 - Tidal effects
 - N-body attractions

Perturbing accelerations – Gravitational Models (1/6)

• Terrestrial Measurements

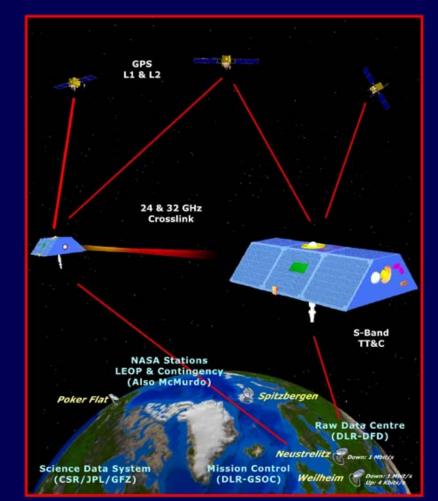


Perturbing accelerations – Gravitational Models (2/6)



10 535 654 marine data & 2 113 592 land data

Perturbing accelerations – Gravitational Models (3/6)



GRACE Mission

Science Goals

High resolution, mean & time variable gravity field mapping for Earth System Science applications.

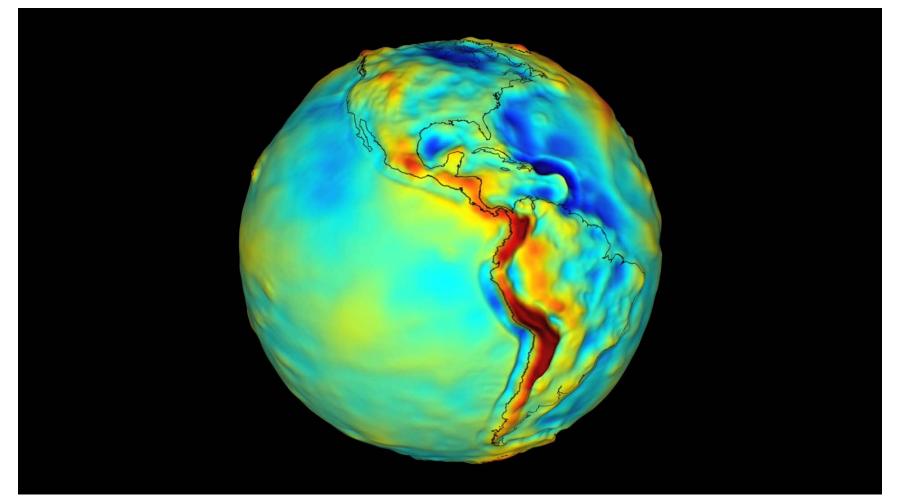
Mission Systems

Instruments •KBR (JPL/SSL) •ACC (ONERA) •SCA (DTU) •GPS (JPL) Satellite (JPL/DSS) Launcher (DLR/Eurockot) Operations (DLR/GSOC) Science (CSR/JPL/GFZ)

Orbit

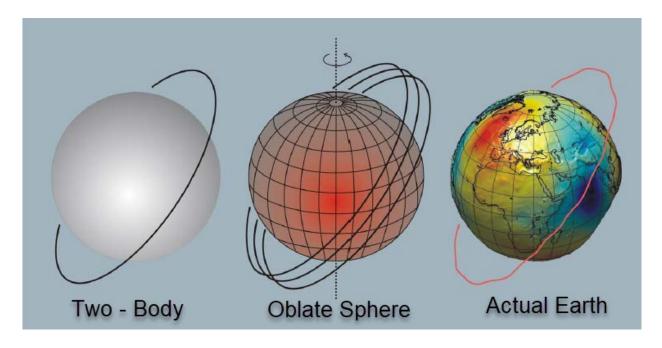
Launch: March 2002 Altitude: 485 km Inclination : 89 deg Eccentricity: ~0.001 Lifetime: 5 years Non-Repeat Ground Track Earth Pointed, 3-Axis Stable

Perturbing accelerations – Gravitational Models (4/6)



Perturbing accelerations – Gravitational Models (5/6)

- Earth's Oblateness $(J_{2,0})$
 - Bulging at the equator
 - \sim 400 times larger than the next term
 - When included in satellite orbits maintains reasonable accuracy



Perturbing accelerations – Gravitational Models (6/6)

- Earth's bulge at equator pulls satellite down faster
 - Exerts a force component toward the equator
- Satellite reaches equator short of point for spherical Earth
 - East-bound satellite goes west
 - West-bound satellite goes east

$$\dot{\Omega} = -\frac{9.9358}{(1-e^2)^2} \left(\frac{r_{eq}}{r_{eq} + \bar{h}}\right)^{3.5} \cos i \ [\text{deg/mean solar day}]$$

- Secular motion of perigee too
 - Force is no longer proportional to inverse square radius

$$\dot{\omega} = \frac{9.9358}{(1-e^2)^2} \left(\frac{r_{eq}}{r_{eq} + \bar{h}}\right)^{3.5} \left(2 - \frac{5}{2}\sin^2 i\right) \, [\text{deg/mean solar day}]$$

Practice problem: Gibbsian method

LOST IN SPACE