

# **Statistical Orbit Determination**



Lecture 3 – Orbital Mechanics Review B Presenter: Christopher R. Simpson

## Recap

- Lecture 2A Notes posted <u>here</u>
  - Two body problem
  - Orbital Elements
    - Intro to some coordinate systems
- Problem solution has been posted
  - Quick review at beginning of this lecture
- Questions
  - Post them to lecture page
- Additional notes
  - Website revamp



# Agenda

- Problem review
- Coordinate Systems
  - Definition
  - Transformation
- Perturbing accelerations
  - Conservative
  - Gravitational models
- Practice problem



# **Problem review**

| Time                          | 0.0         | 1.0         | 2.0         | 3.0         | 4.0          |
|-------------------------------|-------------|-------------|-------------|-------------|--------------|
| Range, $ ho$                  | 7.000000000 | 8.003905970 | 8.944271910 | 9.801147892 | 10.630145813 |
| Calculated Range, $\hat{ ho}$ | 9.013878189 | 9.73203473  | 10.6004717  | 11.5815586  | 12.66688596  |
| $X_0$                         | 1.5         | 3.7         | 5.9         | 8.1         | 10.3         |
| $Y_0$                         | 10.0        | 10.35       | 10.4        | 10.15       | 9.6          |
| $\dot{X}_0$                   | 2.2         | 2.2         | 2.2         | 2.2         | 2.2          |
| $\dot{Y}_0$                   | 0.5         | 0.2         | -0.1        | -0.4        | -0.7         |
| g                             | 0.3         | 0.3         | 0.3         | 0.3         | 0.3          |
| $X_{s}$                       | 1.0         | 1.0         | 1.0         | 1.0         | 1.0          |
| $Y_{S}$                       | 1.0         | 1.0         | 1.0         | 1.0         | 1.0          |



#### **Problem review**

```
C:\Users\simps\Documents\GitHub\StatisticalOrbitDetermination\Soln-HW1-SimpsonAerospace\Debug\Soln-HW1-SimpsonAerospace.exe
                                                                                                                        \times
Error for each iteration...
    2.34283
  0.567827
 0.0633679
0.000279296
6.94741e-09
6.94741e-09
Each iterations output...
    0.402014
                 0.940953
                                                            1.00007 -6.27744e+66
                                0.99995
                                              1.00007
    8.04402
                  8.02017
                                8.00025
                                                                   8 -6.27744e+66
     2.1321
                  2.01002
                                              1.99998
                                                            1.99998 -6.27744e+66
     1.12213
                  1.00554
                               0.999945
                                             0.999982
                                                           0.999982 -6.27744e+66
    0.556422
                  0.50253
                                                           0.499993 -6.27744e+66
                               0.499986
                                             0.499993
```

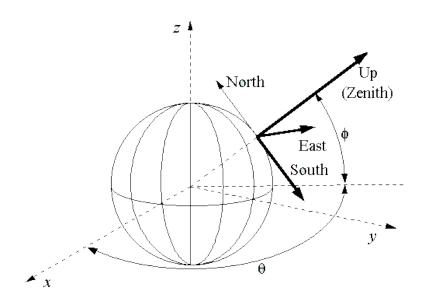


$$\delta u = (H^T H)^{-1} H^T \delta \rho$$



### Coordinate Systems – Definition (1/4)

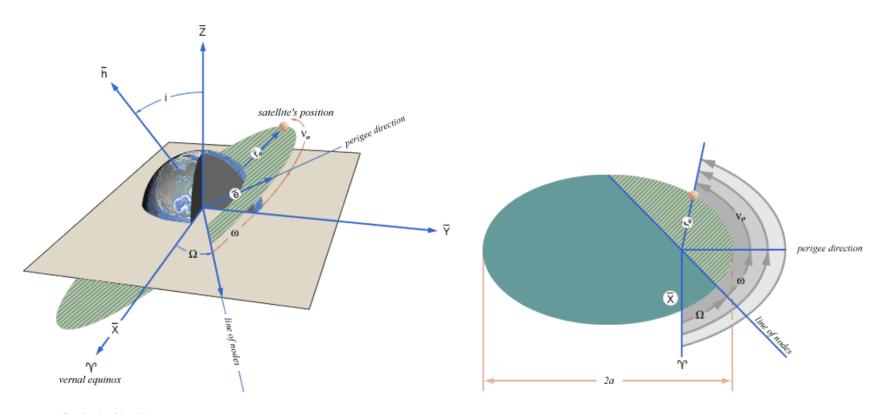
- Topocentric-Horizon Coordinate System
  - Fundamental plane is horizon
  - X points South, Y points East, and Z points up







# Coordinate Systems – Definition (2/4)



- a defines the size of the orbit
- e defines the shape of the orbit
- i defines the orientation of the orbit with respect to the Earth's equator.
- (a) defines where the low point, perigee, of the orbit is with respect to the Earth's surface.
- Ω defines the location of the ascending and descending orbit locations with respect to the Earth's equatorial plane.
- V defines where the satellite is within the orbit with respect to perigee.





## Coordinate Systems – Definition (3/4)

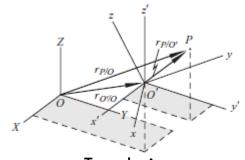
- Three orthonormal vectors
  - Intersection is origin
  - Absolute (inertial) reference frame
- Coordinate transformations
  - Translation

$$- r_{P/O} = r_{O'/O} + r_{P/O'}$$

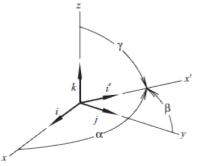
Rotation

$$-\hat{\imath}' = (\hat{\imath}' \cdot \hat{\imath})\hat{\imath} + (\hat{\imath}' \cdot \hat{\jmath})\hat{\jmath} + (\hat{\imath}' \cdot \hat{k})\hat{k}$$

$$-\hat{\imath}' = \cos\alpha\,\hat{\imath} + \cos\beta\,\hat{\jmath} + \cos\gamma\,\hat{k}$$



**Translation** 



Rotation



### Coordinate Systems – Definition (4/4)

- Attitude coordinates
  - Completely describe orientation of rigid body relative to reference
  - A set of coordinates  $\{x_1, x_2, ..., x_n\}$
- Translational and orientation
  - Translational coordinate systems
    - Cartesian, polar, spherical, etc.
    - Differ in distance
    - Can grow infinitely
  - Attitude coordinate systems
    - DCM, Rodriguez parameters, Euler angles, etc.
    - Never further than 180° away





### **Coordinate Systems – Transformation**

#### Coordinate Transformations

$$-\hat{\imath}' = (\hat{\imath}' \cdot \hat{\imath})\hat{\imath} + (\hat{\imath}' \cdot \hat{\jmath})\hat{\jmath} + (\hat{\imath}' \cdot \hat{k})\hat{k}$$

$$-\hat{\imath}' = \cos \alpha_1 \hat{\imath} + \cos \beta_1 \hat{\jmath} + \cos \gamma_1 \hat{k}$$

$$-\hat{\jmath}' = (\hat{\jmath}' \cdot \hat{\imath})\hat{\imath} + (\hat{\jmath}' \cdot \hat{\jmath})\hat{\jmath} + (\hat{\jmath}' \cdot \hat{k})\hat{k}$$

$$-\hat{\jmath}' = \cos \alpha_2 \,\hat{\imath} + \cos \beta_2 \,\hat{\jmath} + \cos \gamma_2 \,\hat{k}$$

$$F_1 = \begin{bmatrix} C_{\alpha_1} & C_{\beta_1} & C_{\gamma_1} \\ C_{\alpha_2} & C_{\beta_2} & C_{\gamma_2} \\ C_{\alpha_3} & C_{\beta_3} & C_{\gamma_3} \end{bmatrix} F_2$$

- Minimum of 3 coordinates required
  - DCM 9 independent parameters
  - Euler angle 3
  - Quaternion 4





# Perturbing accelerations – Conservative (1/2)

Acceleration of satellite with perturbing accelerations

$$\ddot{\vec{r}} + \frac{\mu}{r^3} \vec{r} = \ddot{\vec{r}}_p$$

- Perturbations are conservative if only a function of position
  - Satellite does not lose nor gain mechanical energy
  - Exchanges energy between kinetic energy and potential energy
  - Specific mechanical energy is unique for each orbit
- ullet Examples of non-conservative perturbations (changes to  $ec{r},ec{v}$  )
  - Atmospheric drag
  - Outgassing
  - Tidal effects





# Perturbing accelerations – Conservative (2/2)

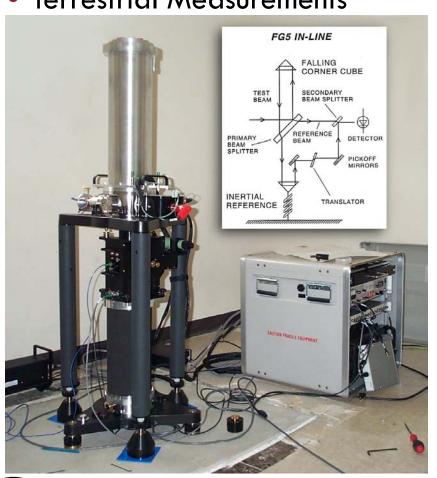
- Examples of conservative perturbations
  - N-body (celestial body) attractions
  - Nonspherical celestial bodies
  - Solar-radiation pressure
- Focus on the gravitational field effects
  - Nonspherical celestial bodies
  - Tidal effects
  - N-body attractions





### Perturbing accelerations – Gravitational Models (1/6)

#### Terrestrial Measurements

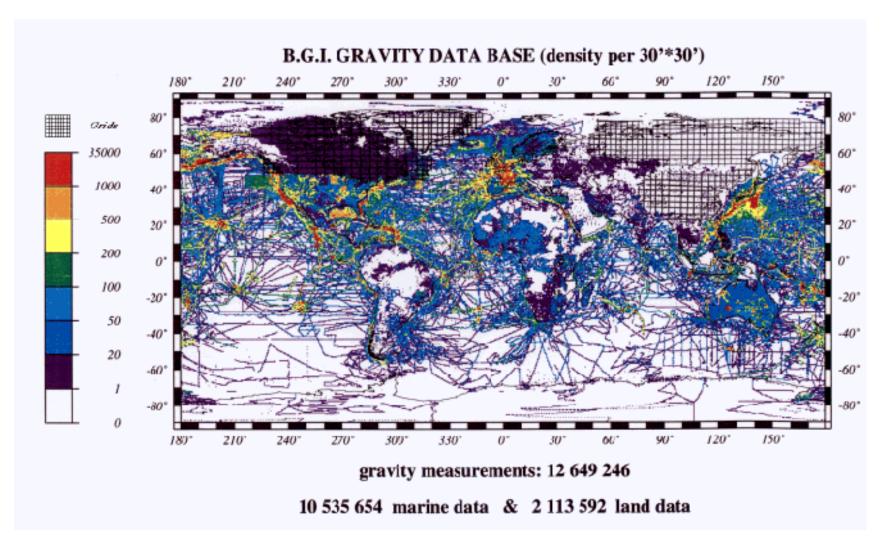








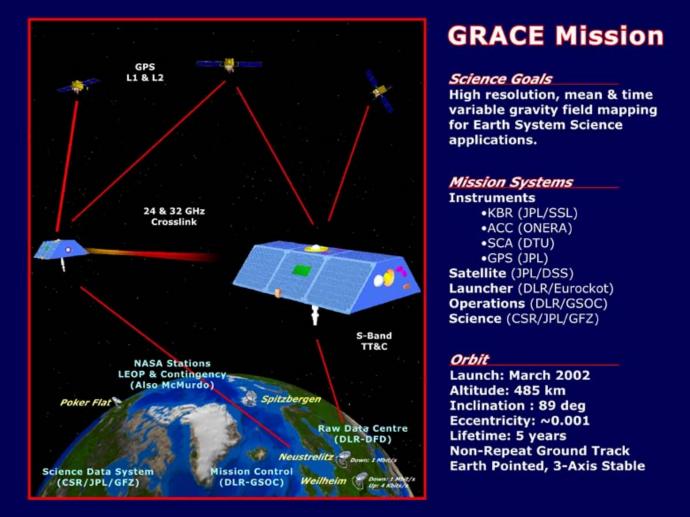
### Perturbing accelerations – Gravitational Models (2/6)







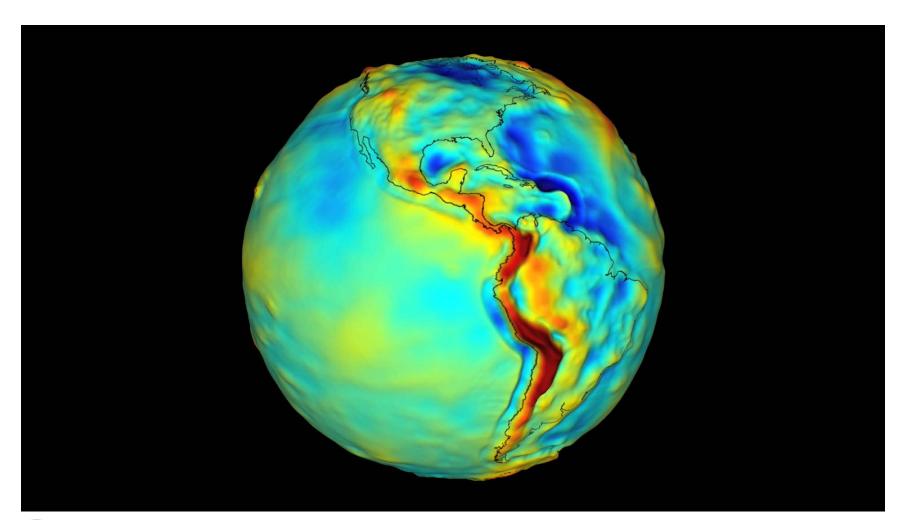
#### Perturbing accelerations – Gravitational Models (3/6)







## Perturbing accelerations – Gravitational Models (4/6)

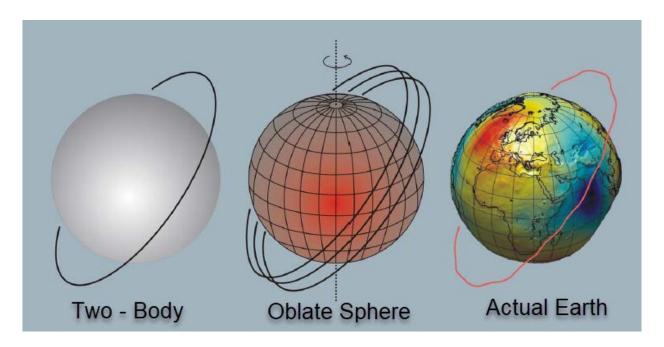






### Perturbing accelerations – Gravitational Models (5/6)

- Earth's Oblateness  $(J_{2,0})$ 
  - Bulging at the equator
  - $-\sim$ 400 times larger than the next term
  - When included in satellite orbits maintains reasonable accuracy







### Perturbing accelerations – Gravitational Models (6/6)

- Earth's bulge at equator pulls satellite down faster
  - Exerts a force component toward the equator
- Satellite reaches equator short of point for spherical Earth
  - East-bound satellite goes west
  - West-bound satellite goes east

$$\dot{\Omega} = -\frac{9.9358}{(1-e^2)^2} \left(\frac{r_{eq}}{r_{eq} + \bar{h}}\right)^{3.5} \cos i \text{ [deg/mean solar day]}$$

- Secular motion of perigee too
  - Force is no longer proportional to inverse square radius

$$\dot{\omega} = \frac{9.9358}{(1 - e^2)^2} \left( \frac{r_{eq}}{r_{eq} + \bar{h}} \right)^{3.5} \left( 2 - \frac{5}{2} \sin^2 i \right) \text{ [deg/mean solar day]}$$





Practice problem: Gibbsian method

# **LOST IN SPACE**

#### Gibbsian Method - Introduction

- Obtain r, v from three coplanar position vectors through successive measurements of  $\rho$ , El, and Az.
  - Developed using pure vector analysis
  - Historically, first contribution of an American scholar to celestial mechanics
- Gibbs problem: Given three nonzero coplanar vectors  $r_1, r_2$ , and  $r_3$  which represent three sequential positions of an orbiting object on one pass, find the parameter p and the eccentricity e of the orbit and the perifocal base vectors P, Q, and W



#### Gibbsian Method - Problem Statement

• Given three position vectors,  $r_1$ ,  $r_2$ , and  $r_3$ , find PQW (perifocal basis vectors expressed in the IJK system), the semilatus rectum, eccentricity, period, and the velocity at position two.

$$-r_1 = 1.000 \hat{k}$$

$$-r_2 = -0.700 \hat{j} - 0.8000 \hat{k}$$

$$-r_3 = 0.9000 \hat{j} + 0.5000 \hat{k}$$

