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Presenter
Presentation Notes
Welcome! Thanks for taking the course!



Recap

• Lecture 2A – Notes posted here
– Two body problem
– Orbital Elements

– Intro to some coordinate systems

• Problem solution has been posted
– Quick review at beginning of this lecture

• Questions
– Post them to lecture page

• Additional notes
– Website revamp
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https://simpsonaerospace.wordpress.com/2018/06/08/lecture-2-orbital-mechanics-review-a/


Agenda

• Problem review

• Coordinate Systems
– Definition
– Transformation

• Perturbing accelerations
– Conservative
– Gravitational models

• Practice problem
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Problem review
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Time Range
0.0 7.000000000
1.0 8.003905970
2.0 8.944271910
3.0 9.801147892
4.0 10.630145813

Time 0.0 1.0 2.0 3.0 4.0

Range, 𝜌𝜌 7.000000000 8.003905970 8.944271910 9.801147892 10.630145813

Calculated Range, �𝜌𝜌 9.013878189 9.73203473 10.6004717 11.5815586 12.66688596

𝑋𝑋0 1.5 3.7 5.9 8.1 10.3

𝑌𝑌0 10.0 10.35 10.4 10.15 9.6

𝑋̇𝑋0 2.2 2.2 2.2 2.2 2.2

𝑌̇𝑌0 0.5 0.2 -0.1 -0.4 -0.7

𝑔𝑔 0.3 0.3 0.3 0.3 0.3

𝑋𝑋𝑠𝑠 1.0 1.0 1.0 1.0 1.0

𝑌𝑌𝑠𝑠 1.0 1.0 1.0 1.0 1.0



Problem review
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• Iteration process, mathematically
– First-order Taylor series expansion, neglecting higher-order terms

𝛿𝛿𝛿𝛿 = 𝜌𝜌 𝑥𝑥 + 𝛿𝛿𝛿𝛿, 𝑦𝑦 + 𝛿𝛿𝛿𝛿, 𝑥̇𝑥 + 𝛿𝛿𝑥̇𝑥, 𝑦̇𝑦 + 𝛿𝛿𝑦̇𝑦,𝑔𝑔 + 𝛿𝛿𝛿𝛿 − 𝜌𝜌 𝑥𝑥, 𝑦𝑦, 𝑥̇𝑥, 𝑦̇𝑦,𝑔𝑔

𝛿𝛿𝛿𝛿 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

δx +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

δy +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥̇𝑥

δ𝑥̇𝑥 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦̇𝑦

δ𝑦̇𝑦 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

δg

𝛿𝛿𝛿𝛿 = 𝐻𝐻 𝛿𝛿𝛿𝛿 ,𝐻𝐻 =

𝜕𝜕𝜌𝜌1
𝜕𝜕𝜕𝜕

⋯
𝜕𝜕𝜌𝜌1
𝜕𝜕𝜕𝜕

⋮ ⋱ ⋮
𝜕𝜕𝜌𝜌𝑛𝑛
𝜕𝜕𝜕𝜕

⋯
𝜕𝜕𝜌𝜌𝑛𝑛
𝜕𝜕𝜕𝜕

, 𝛿𝛿𝛿𝛿 =

𝛿𝛿𝑥𝑥0
𝛿𝛿𝑦𝑦0
𝛿𝛿𝑥̇𝑥0
𝛿𝛿𝑦̇𝑦0
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿 = (𝐻𝐻𝑇𝑇𝐻𝐻)−1𝐻𝐻𝑇𝑇𝛿𝛿𝛿𝛿



Coordinate Systems – Definition (1/4)

• Topocentric-Horizon Coordinate System
– Fundamental plane is horizon
– X points South, Y points East, and Z points up 
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Presentation Notes
https://www.celestrak.com/columns/v02n02/
Topocentric will be our most common frame of reference. Observing cites will have topocentric frames of reference. 




Coordinate Systems – Definition (2/4)
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Presentation Notes
https://spaceflight.nasa.gov/realdata/elements/graphs.html
Earth-Centered Inertial or ECI is the basic and most common frame of reference. We convert all the way from topocentric to ECI to describe our satellite’s flight. Based on a particular epoch -> most current is MJ2000. 



Coordinate Systems – Definition (3/4)

• Three orthonormal vectors
– Intersection is origin
– Absolute (inertial) reference frame

• Coordinate transformations
– Translation

– 𝒓𝒓𝑃𝑃/𝑂𝑂 = 𝒓𝒓𝑂𝑂′/𝑂𝑂 + 𝒓𝒓𝑃𝑃/𝑂𝑂′

– Rotation
– ̂𝚤𝚤′ = ̂𝚤𝚤′ � ̂𝚤𝚤 ̂𝚤𝚤 + ̂𝚤𝚤′ � ̂𝚥𝚥 ̂𝚥𝚥 + ̂𝚤𝚤′ � �𝑘𝑘 �𝑘𝑘
– ̂𝚤𝚤′ = cos𝛼𝛼 ̂𝚤𝚤 + cos𝛽𝛽 ̂𝚥𝚥 + cos𝛾𝛾 �𝑘𝑘
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Translation

Rotation
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Presentation Notes
Ginsberg, Jerry, “Chapter 3: Relative Motion,” Engineering Dynamics, Cambridge University Press, 2008.]
How do we make a coordinate system? How do we move in this coordinate system? From a set of three orthonormal vectors; at their intersection we describe a position/point in space by moving along these vectors. Assuming all vectors are described in the same frame we can perform vector math and add multiple vectors to find different positions. Rotation can be described as a series of angles from the coordinate axes. We can take the dot product to find the cosine of the angle between the axes. 



Coordinate Systems – Definition (4/4)

• Attitude coordinates
– Completely describe orientation of rigid body relative to reference 
– A set of coordinates 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛

• Translational and orientation
– Translational coordinate systems

– Cartesian, polar, spherical, etc.
– Differ in distance
– Can grow infinitely

– Attitude coordinate systems
– DCM, Rodriguez parameters, Euler angles,  etc.
– Never further than 180° away
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Coordinate Systems – Transformation 

• Coordinate Transformations
– ̂𝚤𝚤′ = ̂𝚤𝚤′ � ̂𝚤𝚤 ̂𝚤𝚤 + ̂𝚤𝚤′ � ̂𝚥𝚥 ̂𝚥𝚥 + ̂𝚤𝚤′ � �𝑘𝑘 �𝑘𝑘
– ̂𝚤𝚤′ = cos𝛼𝛼1 ̂𝚤𝚤 + cos𝛽𝛽1 ̂𝚥𝚥 + cos 𝛾𝛾1 �𝑘𝑘
– ̂𝚥𝚥′ = ̂𝚥𝚥′ � ̂𝚤𝚤 ̂𝚤𝚤 + ̂𝚥𝚥′ � ̂𝚥𝚥 ̂𝚥𝚥 + ̂𝚥𝚥′ � �𝑘𝑘 �𝑘𝑘
– ̂𝚥𝚥′ = cos𝛼𝛼2 ̂𝚤𝚤 + cos𝛽𝛽2 ̂𝚥𝚥 + cos 𝛾𝛾2 �𝑘𝑘

𝐹𝐹1 =
𝐶𝐶𝛼𝛼1 𝐶𝐶𝛽𝛽1 𝐶𝐶𝛾𝛾1
𝐶𝐶𝛼𝛼2 𝐶𝐶𝛽𝛽2 𝐶𝐶𝛾𝛾2
𝐶𝐶𝛼𝛼3 𝐶𝐶𝛽𝛽3 𝐶𝐶𝛾𝛾3

𝐹𝐹2

• Minimum of 3 coordinates required
– DCM – 9 independent parameters
– Euler angle – 3 
– Quaternion – 4 
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Ginsberg, Jerry, “Chapter 3: Relative Motion,” Engineering Dynamics, Cambridge University Press, 2008.]
How do we make a coordinate system? How do we move in this coordinate system? From a set of three orthonormal vectors; at their intersection we describe a position/point in space by moving along these vectors. Assuming all vectors are described in the same frame we can perform vector math and add multiple vectors to find different positions. Rotation can be described as a series of angles from the coordinate axes. We can take the dot product to find the cosine of the angle between the axes. We need a minimum of 3 parameters to describe any angular displacement between the two reference frames. A minimal set will have at least one geometrical orientation where the coordinates are singular. At a geometric singularity the kinematic differential equations are also singular. Redundant sets of four or more should be used. 



Perturbing accelerations – Conservative (1/2)

• Acceleration of satellite with perturbing accelerations

̈⃗𝑟𝑟 +
𝜇𝜇
𝑟𝑟3

𝑟𝑟 = ̈⃗𝑟𝑟𝑝𝑝
• Perturbations are conservative if only a function of position

– Satellite does not lose nor gain mechanical energy
– Exchanges energy between kinetic energy and potential energy
– Specific mechanical energy is unique for each orbit

• Examples of non-conservative perturbations (changes to 𝑟𝑟, 𝑣⃗𝑣 )
– Atmospheric drag
– Outgassing
– Tidal effects
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Chobotov, V. A., Orbital Mechanics, Third Edition, edited by J. S. Przemieniecki, Education Series, AIAA, Reston, VA, 2002, p. 195.




Perturbing accelerations – Conservative (2/2)

• Examples of conservative perturbations 
– N-body (celestial body) attractions
– Nonspherical celestial bodies
– Solar-radiation pressure

• Focus on the gravitational field effects
– Nonspherical celestial bodies
– Tidal effects
– N-body attractions
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-conservative only exchanging ke for pe (maintains mechanical energy)
Chobotov, V. A., Orbital Mechanics, Third Edition, edited by J. S. Przemieniecki, Education Series, AIAA, Reston, VA, 2002, p. 195.




Perturbing accelerations – Gravitational Models (1/6)

• Terrestrial Measurements
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Rummel, R., “Satellite Gravimetry,” Institute of Advanced Study, Technische Universitat Munchen, 5th ESA Earth Observation Summer School, Lecture Three, 2-13 Aug 2010 [presentation].



Perturbing accelerations – Gravitational Models (2/6)
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Rummel, R., “Satellite Gravimetry,” Institute of Advanced Study, Technische Universitat Munchen, 5th ESA Earth Observation Summer School, Lecture Three, 2-13 Aug 2010 [presentation].



Perturbing accelerations – Gravitational Models (3/6)
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Presentation Notes
Gravity Recovery and Climate Experiment (GRACE), last modified 17 Feb 2004, <http://www2.csr.utexas.edu/grace/mission/> .



Perturbing accelerations – Gravitational Models (4/6)
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https://svs.gsfc.nasa.gov/3655



Perturbing accelerations – Gravitational Models (5/6)
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• Earth’s Oblateness (𝐽𝐽2,0)
– Bulging at the equator
– ~400 times larger than the next term
– When included in satellite orbits maintains reasonable accuracy

Presenter
Presentation Notes
Piscane, V. L., The Space Environment and Its Effect on Space Systems, edited by J. A. Schetz, Education Series, AIAA, Reston, VA, 2008, pp. 112-116.
Chobotov, V. A., Orbital Mechanics, Third Edition, edited by J. S. Przemieniecki, Education Series, AIAA, Reston, VA, 2002, pp. 215-221.



Perturbing accelerations – Gravitational Models (6/6)
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• Earth’s bulge at equator pulls satellite down faster
– Exerts a force component toward the equator

• Satellite reaches equator short of point for spherical Earth
– East-bound satellite goes west
– West-bound satellite goes east

Ω̇ = −
9.9358
1 − 𝑒𝑒2 2

𝑟𝑟𝑒𝑒𝑒𝑒
𝑟𝑟𝑒𝑒𝑒𝑒 + �ℎ

3.5

cos 𝑖𝑖 [deg/mean solar day]

• Secular motion of perigee too
– Force is no longer proportional to inverse square radius

𝜔̇𝜔 =
9.9358
1 − 𝑒𝑒2 2

𝑟𝑟𝑒𝑒𝑒𝑒
𝑟𝑟𝑒𝑒𝑒𝑒 + �ℎ

3.5

2 −
5
2
sin2 𝑖𝑖 [deg/mean solar day]
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Piscane, V. L., The Space Environment and Its Effect on Space Systems, edited by J. A. Schetz, Education Series, AIAA, Reston, VA, 2008, pp. 112-116.
Chobotov, V. A., Orbital Mechanics, Third Edition, edited by J. S. Przemieniecki, Education Series, AIAA, Reston, VA, 2002, pp. 215-221.



LOST IN SPACE
Practice problem: Gibbsian method



Gibbsian Method – Introduction
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• Obtain 𝒓𝒓,𝒗𝒗 from three coplanar position vectors through 
successive measurements of 𝝆𝝆, El, and Az.

– Developed using pure vector analysis
– Historically, first contribution of an American scholar to celestial 

mechanics

• Gibbs problem: Given three nonzero coplanar vectors 
𝒓𝒓𝟏𝟏, 𝒓𝒓𝟐𝟐, and 𝒓𝒓𝟑𝟑 which represent three sequential positions of an 
orbiting object on one pass, find the parameter 𝑝𝑝 and the 
eccentricity 𝑒𝑒 of the orbit and the perifocal base vectors 𝑷𝑷,𝑸𝑸,
and 𝑾𝑾



Gibbsian Method – Problem Statement
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• Given three position vectors, 𝒓𝒓𝟏𝟏, 𝒓𝒓𝟐𝟐, and 𝒓𝒓𝟑𝟑, find PQW 
(perifocal basis vectors expressed in the IJK system), the semi-
latus rectum, eccentricity, period, and the velocity at position 
two.

– 𝒓𝒓𝟏𝟏 = 1.000 �𝑘𝑘
– 𝒓𝒓𝟐𝟐 = −0.700 ̂𝚥𝚥 − 0.8000 �𝑘𝑘
– 𝒓𝒓𝟑𝟑 = 0.9000 ̂𝚥𝚥 + 0.5000 �𝑘𝑘
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