Statistical Orbit Determination

Lecture 1 – Orbit Determination Concepts
Presenter: Christopher R. Simpson

Introduction

- Welcome!
 - Class Schedule: MWF
 - Syllabus <u>available here</u>
- Working through material
 - If you have a question, leave it on the YouTube page
 - I would like to encourage discussion among those of you working through the material

Agenda

- Overview
 - Inherent characteristics of OD problem
- Dynamic System
 - Dynamic state estimation
 - Uniform gravitational field example
 - Observations
 - Non-linear functions of state variables
 - Linearization
 - State transition matrix
- Example Problem

Overview - Obtain Knowledge

- Orbit Determination is
 - The process by which we obtain knowledge of satellite motion
 - "The problem of determining the best estimate of the state of a spacecraft whose initial state is unknown, from observations influenced by random and systematic errors, using a mathematical model that is not exact, is ... the problem of state estimation," or orbit determination [1]
- Let the astronomers focus on the heavenly bodies
 - We will focus on artificial (noncelestial) satellites

Overview - Characteristics

- Dynamic state estimation
 - Set of parameters required to predict future motion
 - Initially, just position and velocity vectors
 - Later, we will include dynamic and measurement model parameters
- Best estimate
 - Truth of observation and reported state

Overview - Estimates

- "Generating an ephemeris," is predicting the state of a vehicle
 - An ephemeris is a table of position and velocity as function of time
- Predicted values differ from true values for 2 reasons
- 1. Inaccuracies in estimated state vector
 - Approximations in model and method of orbit propagation
 - Errors in observations
 - Errors in computational procedures
- 2. Errors in numerical integration
 - Caused by dynamical model and roundoff errors and truncation

Dynamic System – Estimates (1/2)

- Inaccuracies in estimate and errors in numerical integration
- Review probability, statistics and matrix theory
 - See Appendix A and B or notes on the appendices
- Will use a uniform gravitational field to illustrate OD process
 - True trajectory, X
 - Nominal trajectory, X^*
 - (Best) Estimate trajectory, \hat{X}
- X is our state vector
 - Observations
 - Location of Observations
 - Estimate method

Dynamic System – Estimates (2/2)

Dynamic System – Observing (1/3)

- ullet Updating X is inherently linear
 - $-X = A[\dot{X}]$
 - Ex: $X(t) = X_0 + \dot{X}_0 t$
- Cannot observe individual state components directly
- Observations are non-linear
 - Range, ρ , range-rate, $\dot{\rho}$, elevation, θ , elevation-rate, $\dot{\theta}$, etc.

$$-\rho(t) = \sqrt{(X(t) - X_S)^2 + (Y(t) - Y_S)^2}$$

$$-\tan(\theta(t)) = (Y(t) - Y_s)/(X(t) - X_s)$$

$$-\dot{\rho}(t) = \frac{1}{\rho} [(X(t) - X_S)(\dot{X}(t) - \dot{X}_S) + (Y(t) - Y_S)(\dot{Y}(t) - \dot{Y}_S)]$$

$$-\dot{\theta}(t) = \frac{1}{\rho^2} \left[(X(t) - X_S) (\dot{Y}(t) - \dot{Y}_S) - (\dot{X}(t) - \dot{X}_S) (Y(t) - Y_S) \right]$$

Dynamic System – Observing (2/3)

• Transforming observations into the best estimate $I(X_0) \equiv Y - G(X_0, t) = 0$

•
$$Y$$
 is our observations and G is a 4×1 nonlinear vector from the equations in the previous slide

- Best estimate
 - Solve $J(X_0)$ using Newton-Raphson iteration
 - Iteration is repeated until $\left\|X_0^{n+1} X_0^n\right\| \le \varepsilon$
- Since equations are nonlinear, multiple solutions may exist

Dynamic System – Observing (3/3)

- Not all observation information may be available
 - Range and elevation but not range-rate nor elevation rate
- (ρ, θ) will be insufficient to determine X
 - Two observations at different times will be required
 - The set $(\rho_1, \theta_1, \rho_2, \theta_2)$ is sufficient
- Both approaches assume
 - Perfect knowledge of governing diff. eqns
 - Perfect observations
- In general many observations will be taken
 - This will decrease variance and eliminate random/systematic errors

Dynamic System – Linearization (1/4)

- Best estimate is obtained by linearizing the problem
 - Expand equations of motion
 - Expand observation-state relationship about a reference trajectory
- Deviations from reference are determined for best-fit
 - Minimize variance to yield best agreement with observations
 - Generally based on least-squares criterion

Dynamic System – Linearization (2/4)

- Using the flat-earth example in the previous slide
 - Assume errors in initial position, velocity, and in g values
 - $-X = X^* + \delta X$ or the nominal plus the perturbed state
 - Perturbed means deviation (simplistically) in this case
- Write a state vector, subtracting the nominal

$$-\delta X = X - X^*, \delta X^T = \left[\delta X, \delta Y, \delta \dot{X}, \delta \dot{Y}, g\right]$$
$$-\delta X = \delta X_0 + \delta \dot{X}_0 t$$
$$-\delta Y = \delta Y_0 + \delta \dot{Y}_0 t - \delta g \left(\frac{t^2}{t}\right)$$

$$-\delta Y = \delta Y_0 + \delta \dot{Y}_0 t - \delta g \left(\frac{t^2}{2}\right)$$

$$-\delta \dot{X} = \delta \dot{X}_0$$

$$-\delta \dot{Y} = \delta \dot{Y}_0 - \delta gt$$

$$-\delta g = \delta g$$

Dynamic System – Linearization (3/4)

Observations becoming linear

- Observations linearized by expanding in Taylor series about X^*

$$-\rho \cong \rho^* + \left[\frac{\delta\rho}{\delta X}\right]^* (X - X^*) + \left[\frac{\delta\rho}{\delta Y}\right]^* (Y - Y^*) + \varepsilon_{\rho}$$

$$-\theta \cong \theta^* + \left[\frac{\delta\theta}{\delta X}\right]^* (X - X^*) + \left[\frac{\delta\theta}{\delta Y}\right]^* (Y - Y^*) + \varepsilon_{\theta}$$

- $-\dot{\theta} \cong 0$
- $-\dot{\rho}\cong 0$

Rewriting

$$-\delta\rho = \left[\frac{\delta\rho}{\delta X}\right]^*\delta X + \left[\frac{\delta\rho}{\delta Y}\right]^*\delta Y + \varepsilon_{\rho}$$

$$-\delta\theta \cong \left[\frac{\delta\theta}{\delta X}\right]^*\delta X + \left[\frac{\delta\theta}{\delta Y}\right]^*\delta Y + \varepsilon_{\theta}$$

Dynamic System – Linearization (4/4)

- Determining the deviation from the nominal trajectory
 - We have linearized the system
 - We can now use linear algebra to our advantage

$$y = \widetilde{H}x + \varepsilon$$

- $-y^T = [\delta \rho \ \delta \theta]$
- \widetilde{H} is the mapping vector of partial derivatives with respect to X^*
- $-x^{T} = \left[\delta X \, \delta Y \, \delta \dot{X} \, \delta \dot{Y} \, \delta g \right]$
- $-\varepsilon^{T} = \left[\varepsilon_{\rho} \ \varepsilon_{\theta}\right]$
- Think about it: How can you use this? Why is this valuable?

Dynamic System – State Transition Matrix (1/2)

- The state transition matrix (Φ) updates the deviation vector
 - $[\delta X] = \Phi(t, t_0)[\delta X_0]$
 - In other words, Φ maps deviations in the state vector from one time to another
- Classical orbit determination the mapping is exact
- General orbit determination
 - State equations are nonlinear
 - Φ is the linear term in a Taylor series expansion of X(t) at t_0

Dynamic System – State Transition Matrix (2/2)

- Φ maps x_0 to x(t)
 - $-y(t) = \left[\widetilde{H}(t)\Phi(t,t_0)\right]\left[\Phi(t,t_0)x_0\right] + \varepsilon$
- ullet Given an arbitrary epoch, t_k
 - We can determine the best estimate of x_k using the deviations
 - H will be a $m \times n$ vector
 - -n is the number of state variables
 - m is the number of observations
 - In general OD $m \ge n$ is always satisfied
 - In classical OD m=n
- We will cover how to use these extra observations later

Practice Problem: Uniform Gravitational Field (2D)

SIMPLE DYNAMIC SYSTEM

Simple Dynamic System - Problem Definition

Given perturbed initial conditions, use a Newton iteration scheme to recover the exact initial conditions or conditions used to produce the observations provided. Assume the ground station coordinates are correct.

- Write a computer program that computes $ho(t_i)$
 - 2D uniform gravity field
- Compute observations from given initial conditions
- Iterate and solve for the correct initial conditions

•
$$X_0 = 1.5, Y_0 = 10.0, \dot{X}_0 = 2.2, \dot{Y}_0 = 0.5, g = 0.3, X_S = Y_S = 1.0$$

• $\rho(t = 0, 1, 2, 3, 4) =$ 7.0, 8.00390597, 8.94427191, 9.801147892, 10.630145813

