Statistical Orbit Determination
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Lecture 1 — Orbit Determination Concepts

Presenter: Christopher R. Simpson



Introduction

* Welcomel!
— Class Schedule: MWF

— Syllabus available here

* Working through material
— If you have a question, leave it on the YouTube page

— | would like to encourage discussion among those of you
working through the material
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https://mailchi.mp/d95b0d174531/odcourse

Agenda

e Overview

— Inherent characteristics of OD problem

* Dynamic System

— Dynamic state estimation

— Uniform gravitational field example

— Observations

— Non-linear functions of state variables
— Linearization

— State transition matrix

* Example Problem
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Overview — Obtain Knowledge

e Orbit Determination is

— The process by which we obtain knowledge of satellite
motion

— “The problem of determining the best estimate of the state of a spacecraft
whose initial state is unknown, from observations influenced by random and
systematic errors, using a mathematical model that is not exact, is ... the
problem of state estimation,” or orbit determination [1]

* Let the astronomers focus on the heavenly bodies

— We will focus on artificial (noncelestial) satellites
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Overview — Characteristics

* Dynamic state estimation
— Set of parameters required to predict future motion
— Initially, just position and velocity vectors
— Later, we will include dynamic and measurement model
parameters
* Best estimate

— Truth of observation and reported state
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Overview — Estimates

* “Generating an ephemeris,” is predicting the state of a vehicle

— An ephemeris is a table of position and velocity as function of time

* Predicted values differ from true values for 2 reasons

* 1. Inaccuracies in estimated state vector

— Approximations in model and method of orbit propagation
— Errors in observations

— Errors in computational procedures

* 2. Errors in numerical integration

— Caused by dynamical model and roundoff errors and truncation
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Dynamic System — Estimates (1/2)

* Inaccuracies in estimate and errors in numerical integration

* Review probability, statistics and matrix theory

— See Appendix A and B or notes on the appendices

* Will use a uniform gravitational field to illustrate OD process

— True trajectory, X
— Nominal trajectory, X*

N

— (Best) Estimate trajectory, X

* Xis our state vector
— Observations
— Location of Observations

— Estimate method
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Dynamic System — Estimates (2/2)

Estimated Trajectory

A s
/ True Trajectory
—_—
\

Nominal Trajectory
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Dynamic System — Observing (1/3)

* Updating X is inherently linear
- X = A|X]
—Ex: X(t) = Xy + Xt
* Cannot observe individual state components directly

e Observations are non-linear

— Range, p, range-rate, P, elevation, 8, elevation-rate, 0, etc.

- p(t) =JX(@) — X)% + (Y (t) — Y5)?
— tan(0(t)) = (Y(t) — Y)/(X(t) — Xs)
- p(t) = %[(X () = X)(X(@) — Xs) + (Y (©) = Y (Y (£) — Ys)]

- 00 = 5 [(X(® - x)(Y(®) = %) = (X(®) = X) (¥ (&) = ¥o)]
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Dynamic System — Observing (2/3)

* Transforming observations into the best estimate

JXo) =Y = G(Xp,t) =0

Y is our observations and G is a 4x1 nonlinear vector from the
equations in the previous slide

* Best estimate
— Solve J(X,) using Newton-Raphson iteration

— Iteration is repeated until ”X(T)H_l — X(T)l” <&

* Since equations are nonlinear, multiple solutions may exist
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Dynamic System — Observing (3/3)

Not all observation information may be available

— Range and elevation but not range-rate nor elevation rate

(p, 0) will be insufficient to determine X
— Two observations at different times will be required
— The set (pq, 84, py, 0,) is sufficient

Both approaches assume
— Perfect knowledge of governing diff. eqgns

— Perfect observations

* In general many observations will be taken

— This will decrease variance and eliminate random /systematic errors
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Dynamic System — Linearization (1/4)

* Best estimate is obtained by linearizing the problem
— Expand equations of motion

— Expand observation-state relationship about a reference trajectory

* Deviations from reference are determined for best-fit
— Minimize variance to yield best agreement with observations

— Generally based on least-squares criterion

Estimated Trajectory

Y /’\
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Nominal Trajectory




Dynamic System — Linearization (2/4)

* Using the flat-earth example in the previous slide
— Assume errors in initial position, velocity, and in g values

— X = X* 4+ 6X or the nominal plus the perturbed state

— Perturbed means deviation (simplistically) in this case

* Write a state vector, subtracting the nominal
- 86X =X —-X*6XT =|6X,6Y,6X,6Y,g]
- 6X == 6X0 + SXOt
. t2
~ 8Y = 8%, + 8%t — 89 (%)

_ 8Y = &Y, — gt
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Dynamic System — Linearization (3/4)

* Observations becoming linear

— Observations Imequzed by expandlng in Taylor series about X~
[5p] [6
o=+ [ x—x + 2] (v - Y) +e,

__6X__ | 6Y |
—o =0+ 2 8o
—6=0

5] (X —X") + 5Y
-p=0

(Y— Y*) + &g

* Rewriting

_5'0:_5_)(_ 5X+_§_ oY + ¢,
N -5_9-* -6_0-*
- 00 = . 5X+_6y_ OY + &g
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Dynamic System — Linearization (4/4)

* Determining the deviation from the nominal trajectory
— We have linearized the system

— We can now use linear algebra to our advantage
y=Hx+ ¢
- y' = [8p 6]
— H is the mapping vector of partial derivatives with respect to X™
- xT = [6X §Y 6X Y &9]
— el = [ep £

* Think about it: How can you use this¢ Why is this valuable?
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Dynamic System — State Transition Matrix (1/2)

* The state transition matrix (®P) updates the deviation vector
- [6X] = (¢, t0)[6X,]

— In other words, @ maps deviations in the state vector from one time to
another

* Classical orbit determination the mapping is exact

* General orbit determination
— State equations are nonlinear
— @ is the linear term in a Taylor series expansion of X(t) at £,
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Dynamic System — State Transition Matrix (2/2)

* ® maps xy to x(t)
- y(&) = [H®)D(t, to) | [P(t, to)xo] + €

* Given an arbitrary epoch, t;,
— We can determine the best estimate of X}, using the deviations

— H will be a m X n vector
— n is the number of state variables

— m is the number of observations
— In general OD m = n is always satisfied
— In classical ODm = n

* We will cover how to use these extra observations later
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Practice Problem: Uniform Gravitational Field (2D)

SIMPLE DYNAMIC SYSTEM



Simple Dynamic System — Problem Definition

Given perturbed initial conditions, use a Newton iteration scheme to recover the
exact initial conditions or conditions used to produce the observations provided.
Assume the ground station coordinates are correct.

* Write a computer program that computes p(t;)
— 2D uniform gravity field

Compute observations from given initial conditions

lterate and solve for the correct initial conditions
Xo=15,Y,=10.0,X,=22,Y,=0.5,9=03X,=Y, =1.0

p(t=0,1,2,3,4) =
7.0,8.00390597,8.94427191,9.801147892,10.630145813
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