Statistical Orbit Determination

Lecture 2 - Orbital Mechanics Review
Presenter: Christopher R. Simpson

Recap

- Lecture 2 - Notes posted here
- State estimation (what orbit determination is)
- Linearization and state transition matrix
- Problem due Mon, 28 Jan
- Quick review at beginning of this lecture
- Questions
- Post them to lecture page
- Additional notes
- Website revamp

Agenda

- Problem review
- Two body problem
- Gravitational force
- Relative motion
- n-body problem
- Orbital elements and \vec{r} / \vec{v}
- Conic sections
- Coordinate systems
- Perturbing accelerations
- Conservative
- Gravitational models
- Practice problem

Problem review

| Time | 0.0 | 1.0 | 2.0 | 3.0 | 4.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Range, ρ | 7.000000000 | 8.003905970 | 8.944271910 | 9.801147892 | 10.630145813 |
| Calculated Range, $\hat{\rho}$ | 9.013878189 | 9.73203473 | 10.6004717 | 11.5815586 | 12.66688596 |
| X_{0} | 1.5 | 3.7 | 5.9 | 8.1 | 10.3 |
| Y_{0} | 10.0 | 10.35 | 10.4 | 10.15 | 9.6 |
| \dot{X}_{0} | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 |
| \dot{Y}_{0} | 0.5 | 0.2 | -0.1 | -0.7 | |
| X_{S} | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
| Y_{S} | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |

Two body problem - Gravitational Force (1/2)

- Newton's Law of Universal Gravitation

$$
\vec{F}=-\frac{G m M}{r^{2}} \frac{\vec{r}}{r}
$$

- Assumptions
- Two point masses/bodies are spherically symmetric
- Gravitational force propagates instantaneously (No relativistic effects)
- Only forces in the system are the gravitational attractions
- Gravitational constant, $G=6.6742 \times 10^{-20} \frac{\mathrm{~km}^{3}}{\mathrm{~kg}-\mathrm{s}^{2}}$
- Earth's estimated mass, $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg}$
- Gravitational parameter, $\mu=M_{\oplus} G=3.98 \times 10^{5} \frac{\mathrm{~km}^{3}}{\mathrm{~s}^{2}}$

Two body problem - Gravitational Force (2/2)

- Gravitational acceleration, g

$$
g \equiv\left\|\frac{\vec{F}}{m}\right\|=-\frac{G M}{r^{2}}=-\frac{\mu}{r^{2}}
$$

- Field acceleration on surface of uniformly dense sphere gives g_{0}
- Earth's radius is 6378 km

$$
g_{0}=-\frac{\mu}{r^{2}}=-\left(\frac{3.98 \times 10^{5} \frac{\mathrm{~km}^{3}}{\mathrm{~s}^{2}}}{(6378 \mathrm{~km})^{2}}\right) \cong-9.81 \mathrm{~m} / \mathrm{s}^{2}
$$

Two body problem - Relative motion

- When M >> m

$$
\mu \cong G(M+m)=G M
$$

- Acceleration of point mass, m

Two body problem - n-body problem

- Assume a system of n -bodies
- $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ and we want to examine m_{i}
- Sum the vectors acting on m_{i}

$$
\vec{F}_{g}=-G m_{i} \sum_{j=1, j \neq i}^{n} \frac{m_{j}}{r_{i j}^{3}} \vec{r}_{j i}
$$

- Adding all other forces

$$
\ddot{\vec{r}}_{i}=\frac{\vec{F}_{g}+\vec{F}_{\text {other }}}{m_{i}}-\dot{\vec{r}_{i}}\left(\frac{\dot{m}_{i}}{m_{i}}\right)
$$

- Second order, nonlinear, vector, differential equation of motion
- Not solved in present form

Orbital elements and \vec{r} / \vec{v} - Conic Sections (1/4)

- Gravitational field is conservative
- Object moving under influence of g only exchanges KE for PE
- Specific mechanical energy is constant for each orbit
$-\varepsilon=\frac{v^{2}}{2}-\frac{\mu}{r}$
- Specific angular momentum is constant
$-\vec{h}=\vec{r} \times \vec{v}$
- Position and velocity act only in orbital plane
- Flight path angle, $\phi=\operatorname{acos} \frac{h}{r v}$
- Zenith angle, $\gamma=\mathrm{a} \sin \frac{h}{r v}$

Orbital elements and \vec{r} / \vec{v} - Conic Sections (2/4)

- Conic sections, family of curves, only trajectories for orbit
- Circle, $e=0$, ellipse, $0<e<1$, parabola, $e=1$, hyperbola, $e>1$
- In polar coordinates, $r=\frac{p}{1+e \cos v}$
- Semilatus rectum, $p=a\left(1-e^{2}\right)=h^{2} / \mu$
- Eccentricity, $e=\sqrt{1+\frac{2 \varepsilon h^{2}}{\mu^{2}}}$
- The focus of the conic orbit is the center of the central body

Orbital elements and \vec{r} / \vec{v} - Conic Sections (3/4)

- Six parameters needed to describe an orbit
- Classical orbital elements
- a, semi-major axis
- e, eccentricity
- i, inclination
$-\Omega$, longitude of the ascending node
- ω, argument of periapsis
- T, time of periapsis passage

Orbital elements and \vec{r} / \vec{v} - Conic Sections (4/4)

a - defines the size of the orbit
e - defines the shape of the orbit
i - defines the orientation of the orbit with respect to the Earth's equator.
ω - defines where the low point, perigee, of the orbit is with respect to the Earth's surface.
Ω - defines the location of the ascending and descending orbit locations with respect to the Earth's equatorial plane.
V - defines where the satellite is within the orbit with respect to perigee.

Orbital elements and \vec{r} / \vec{v} - Coordinate Systems (1/2)

- Heliocentric-Ecliptic
- Origin at center of Sun
- Fundamental plane is ecliptic or Earth's orbital plane about the Sun
- Used as inertial reference frame when defined by an epoch
- Geocentric-Equatorial
- Origin at center of Earth
- Fundamental plane is equatorial plane
- Not fixed to Earth
- Right Ascension-Declination
- Origin at center of Earth or point on surface of Earth
- Fundamental plane is equatorial plane fixed to the celestial sphere
- Star positions known accurately, satellite in background
- Topocentric-Horizon Coordinate System
- Fundamental plane is horizon
- X points South, Y points East, and Z points up

Perturbing accelerations - Conservative (1/2)

- Acceleration of satellite with perturbing accelerations

$$
\ddot{\vec{r}}+\frac{\mu}{r^{3}} \vec{r}=\ddot{\vec{r}}_{p}
$$

- Perturbations are conservative if only a function of position
- Satellite does not lose nor gain mechanical energy
- Exchanges energy between kinetic energy and potential energy
- Specific mechanical energy is unique for each orbit
- Examples of non-conservative perturbations (changes to \vec{r}, \vec{v})
- Atmospheric drag
- Outgassing
- Tidal effects

Perturbing accelerations - Conservative (2/2)

- Examples of conservative perturbations
- N-body (celestial body) attractions
- Nonspherical celestial bodies
- Solar-radiation pressure
- Focus on the gravitational field effects
- Nonspherical celestial bodies
- Tidal effects
- N-body attractions

Perturbing accelerations - Gravitational Models (1/6)

- Terrestrial Measurements

Perturbing accelerations - Gravitational Models (2/6)

B.G.I. GRAVITY DATA BASE (density per $30^{\boldsymbol{\prime}}{ }^{*} \mathbf{3 0}$ ')

10535654 marine data \& 2113592 land data

Perturbing accelerations - Gravitational Models (3/6)

GRACE Mission

Science Goals
High resolution, mean \& time variable gravity field mapping for Earth System Science applications.

Mission Systems
Instruments
-KBR (JPL/SSL)
-ACC (ONERA)

- SCA (DTU)
-GPS (JPL)
Satellite (JPL/DSS)
Launcher (DLR/Eurockot)
Operations (DLR/GSOC)
Science (CSR/JPL/GFZ)

Orbit

Launch: March 2002
Altitude: $\mathbf{4 8 5} \mathbf{~ k m}$ Inclination : $\mathbf{8 9}$ deg Eccentricity: ~0.001 Lifetime: 5 years
Non-Repeat Ground Track Earth Pointed, 3-Axis Stable

Perturbing accelerations - Gravitational Models (4/6)

Perturbing accelerations - Gravitational Models (5/6)

- Earth's Oblateness $\left(J_{2,0}\right)$
- Bulging at the equator
- ~400 times larger than the next term
- When included in satellite orbits maintains reasonable accuracy

Perturbing accelerations - Gravitational Models (6/6)

- Earth's bulge at equator pulls satellite down faster
- Exerts a force component toward the equator
- Satellite reaches equator short of point for spherical Earth
- East-bound satellite goes west
- West-bound satellite goes east

$$
\dot{\Omega}=-\frac{9.9358}{\left(1-e^{2}\right)^{2}}\left(\frac{r_{e q}}{r_{e q}+\bar{h}}\right)^{3.5} \cos i[\mathrm{deg} / \text { mean solar day }]
$$

- Secular motion of perigee too
- Force is no longer proportional to inverse square radius

$$
\dot{\omega}=\frac{9.9358}{\left(1-e^{2}\right)^{2}}\left(\frac{r_{e q}}{r_{e q}+\bar{h}}\right)^{3.5}\left(2-\frac{5}{2} \sin ^{2} i\right)[\mathrm{deg} / \text { mean solar day }]
$$

