Statistical Orbit Determination

Lecture 2 – Orbital Mechanics Review Presenter: Christopher R. Simpson

Recap

- Lecture 2 Notes posted <u>here</u>
 - State estimation (what orbit determination is)
 - Linearization and state transition matrix
- Problem due Mon, 28 Jan
 - Quick review at beginning of this lecture
- Questions
 - Post them to lecture page
- Additional notes
 - Website revamp

Agenda

- Problem review
- Two body problem
 - Gravitational force
 - Relative motion
 - n-body problem
- Orbital elements and \vec{r}/\vec{v}
 - Conic sections
 - Coordinate systems
- Perturbing accelerations
 - Conservative
 - Gravitational models
- Practice problem

Problem review

Time	0.0	1.0	2.0	3.0	4.0
Range, $ ho$	7.000000000	8.003905970	8.944271910	9.801147892	10.630145813
Calculated Range, $\hat{ ho}$	9.013878189	9.73203473	10.6004717	11.5815586	12.66688596
X_0	1.5	3.7	5.9	8.1	10.3
Y_0	10.0	10.35	10.4	10.15	9.6
\dot{X}_0	2.2	2.2	2.2	2.2	2.2
\dot{Y}_0	0.5	0.2	-0.1	-0.4	-0.7
g	0.3	0.3	0.3	0.3	0.3
X_{S}	1.0	1.0	1.0	1.0	1.0
Y_{S}	1.0	1.0	1.0	1.0	1.0

Two body problem – Gravitational Force (1/2)

Newton's Law of Universal Gravitation

$$\vec{F} = -\frac{GmM}{r^2} \frac{\vec{r}}{r}$$

- Assumptions
 - Two point masses/bodies are spherically symmetric
 - Gravitational force propagates instantaneously (No relativistic effects)
 - Only forces in the system are the gravitational attractions
- Gravitational constant, $G = 6.6742 \times 10^{-20} \frac{\text{km}^3}{\text{kg-s}^2}$
- Earth's estimated mass, $M_{\oplus} = 5.9722 \times 10^{24} \text{ kg}$
- Gravitational parameter, $\mu = M_{\bigoplus}G = 3.98 \times 10^5 \, \frac{\mathrm{km^3}}{\mathrm{S^2}}$

Two body problem – Gravitational Force (2/2)

ullet Gravitational acceleration, g

$$g \equiv \left\| \frac{\vec{F}}{m} \right\| = -\frac{GM}{r^2} = -\frac{\mu}{r^2}$$

- ullet Field acceleration on surface of uniformly dense sphere gives g_0
 - Earth's radius is 6378 km

$$g_0 = -\frac{\mu}{r^2} = -\left(\frac{3.98 \times 10^5 \frac{\text{km}^3}{\text{s}^2}}{(6378 \text{ km})^2}\right) \cong -9.81 \text{ m/s}^2$$

Two body problem - Relative motion

• When $M \gg m$

$$\mu \cong G(M+m) = GM$$

ullet Acceleration of point mass, m

Two body problem - n-body problem

- Assume a system of n-bodies
 - $(m_1, m_2, ..., m_n)$ and we want to examine m_i
 - Sum the vectors acting on m_i

$$\vec{F}_g = -Gm_i \sum_{j=1, j \neq i}^n \frac{m_j}{r_{ij}^3} \vec{r}_{ji}$$

Adding all other forces

$$\ddot{\vec{r}}_i = \frac{\vec{F}_g + \vec{F}_{\text{other}}}{m_i} - \dot{\vec{r}}_i \left(\frac{\dot{m}_i}{m_i}\right)$$

- Second order, nonlinear, vector, differential equation of motion
 - Not solved in present form

Orbital elements and \vec{r}/\vec{v} — Conic Sections (1/4)

- Gravitational field is conservative
 - Object moving under influence of g only exchanges KE for PE
 - Specific mechanical energy is constant for each orbit

$$-\varepsilon = \frac{v^2}{2} - \frac{\mu}{r}$$

Specific angular momentum is constant

$$-\vec{h} = \vec{r} \times \vec{v}$$

- Position and velocity act only in orbital plane
- Flight path angle, $\phi = a\cos\frac{h}{rv}$
- Zenith angle, $\gamma = a\sin\frac{h}{rv}$

Orbital elements and \vec{r}/\vec{v} — Conic Sections (2/4)

- Conic sections, family of curves, only trajectories for orbit
 - Circle, e=0, ellipse, 0 < e < 1, parabola, e=1, hyperbola, e>1
 - In polar coordinates, $r = \frac{p}{1 + e \cos \nu}$
 - Semilatus rectum, $p=a~(1-e^2)=h^2/\mu$
 - Eccentricity, $e = \sqrt{1 + \frac{2\varepsilon h^2}{\mu^2}}$
 - The focus of the conic orbit is the center of the central body

Orbital elements and \vec{r}/\vec{v} – Conic Sections (3/4)

- Six parameters needed to describe an orbit
 - Classical orbital elements
 - -a, semi-major axis
 - e, eccentricity
 - -i, inclination
 - Ω , longitude of the ascending node
 - ω , argument of periapsis
 - T, time of periapsis passage

Orbital elements and \vec{r}/\vec{v} — Conic Sections (4/4)

- a defines the size of the orbit
- e defines the shape of the orbit
- i defines the orientation of the orbit with respect to the Earth's equator.
- (a) defines where the low point, perigee, of the orbit is with respect to the Earth's surface.
- Ω defines the location of the ascending and descending orbit locations with respect to the Earth's equatorial plane.
- V defines where the satellite is within the orbit with respect to perigee.

Orbital elements and \vec{r}/\vec{v} – Coordinate Systems (1/2)

Heliocentric-Ecliptic

- Origin at center of Sun
- Fundamental plane is ecliptic or Earth's orbital plane about the Sun
- Used as inertial reference frame when defined by an epoch

Geocentric-Equatorial

- Origin at center of Earth
- Fundamental plane is equatorial plane
- Not fixed to Earth

Right Ascension-Declination

- Origin at center of Earth or point on surface of Earth
- Fundamental plane is equatorial plane fixed to the celestial sphere
- Star positions known accurately, satellite in background

Orbital elements and \vec{r}/\vec{v} – Coordinate Systems (2/2)

- Topocentric-Horizon Coordinate System
 - Fundamental plane is horizon
 - X points South, Y points East, and Z points up

Perturbing accelerations – Conservative (1/2)

Acceleration of satellite with perturbing accelerations

$$\ddot{\vec{r}} + \frac{\mu}{r^3} \vec{r} = \ddot{\vec{r}}_p$$

- Perturbations are conservative if only a function of position
 - Satellite does not lose nor gain mechanical energy
 - Exchanges energy between kinetic energy and potential energy
 - Specific mechanical energy is unique for each orbit
- ullet Examples of non-conservative perturbations (changes to $ec{r},ec{v}$)
 - Atmospheric drag
 - Outgassing
 - Tidal effects

Perturbing accelerations – Conservative (2/2)

- Examples of conservative perturbations
 - N-body (celestial body) attractions
 - Nonspherical celestial bodies
 - Solar-radiation pressure
- Focus on the gravitational field effects
 - Nonspherical celestial bodies
 - Tidal effects
 - N-body attractions

Perturbing accelerations – Gravitational Models (1/6)

Terrestrial Measurements

Perturbing accelerations – Gravitational Models (2/6)

Perturbing accelerations – Gravitational Models (3/6)

Perturbing accelerations – Gravitational Models (4/6)

Perturbing accelerations – Gravitational Models (5/6)

- Earth's Oblateness $(J_{2,0})$
 - Bulging at the equator
 - $-\sim$ 400 times larger than the next term
 - When included in satellite orbits maintains reasonable accuracy

Perturbing accelerations – Gravitational Models (6/6)

- Earth's bulge at equator pulls satellite down faster
 - Exerts a force component toward the equator
- Satellite reaches equator short of point for spherical Earth
 - East-bound satellite goes west
 - West-bound satellite goes east

$$\dot{\Omega} = -\frac{9.9358}{(1-e^2)^2} \left(\frac{r_{eq}}{r_{eq} + \bar{h}}\right)^{3.5} \cos i \text{ [deg/mean solar day]}$$

- Secular motion of perigee too
 - Force is no longer proportional to inverse square radius

$$\dot{\omega} = \frac{9.9358}{(1 - e^2)^2} \left(\frac{r_{eq}}{r_{eq} + \bar{h}} \right)^{3.5} \left(2 - \frac{5}{2} \sin^2 i \right) \text{ [deg/mean solar day]}$$

