
Statistical Orbit Determination

Lecture 4 – Classical Two-Body Problem

Presenter: Christopher R. Simpson



Recap

• Lecture 3 – Notes posted here

– Problem solution and review of linearization

• Questions

– Post them to YouTube page
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https://simpsonaerospace.wordpress.com/2019/01/29/spring-2019-lecture-3-problem-solution-and-review-28-jan-2019/


Agenda

• Two-body orbital dynamics

– General properties

– Planar motion

– Kepler’s problem

– Motion in space

– Greenwich angle

• Orbit elements to position and velocity

– State transition matrix and error propagation

• Assigned Problems
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Two body – General properties (1/2)

• Newton’s Law of Universal Gravitation

Ԧ𝐹 = −
𝐺𝑚𝑀
𝑟2

𝑟
𝑟

• Assumptions

– Two point masses/bodies are spherically symmetric

– Gravitational force propagates instantaneously (No relativistic effects)

• Constants

– Gravitational constant, 𝐺 = 6.6742 × 10−20
km3

kg−s2

– Earth’s estimated mass, 𝑀⊕ = 5.9722 × 1024 kg

– Gravitational parameter, 𝜇⊕ ≅ 𝑀⊕𝐺 = 3.98 × 105
km3

s2
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Two body – General properties (2/2)

• Equations of motion

– Equation of relative motion from Laws of Motion and Gravitation

ሷ ҧ𝑟 +
𝜇

𝑟3
ҧ𝑟 = 0

• Motion of two-body center of mass

– Center of mass of two spheres moves in a straight line with constant velocity

– ത𝑅𝑐𝑚 =
𝑀1 ത𝑅1+𝑀2 ത𝑅2

𝑀1+𝑀2
, 𝑀1

ሷത𝑅1 =
𝐺𝑀1𝑀2 ҧ𝑟

𝑟3
, → ሷത𝑅𝑐𝑚 = 0

• Angular momentum

– Orbital motion is planar and perpendicular to angular momentum

– ҧ𝑟 × ሷҧ𝑟 = ҧ𝑟 × −
𝜇

𝑟3
ҧ𝑟 →

𝑑

𝑑𝑡
ҧ𝑟 × ሶҧ𝑟 = 0

• Energy

– Energy per unit mass is constant

– 𝜀 =
ҧ𝑟 ∙ ҧ𝑟

2
−

𝜇

𝑟
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Two body – Planar motion (1/3)

• Orbital motion of 𝑀2 w/r to 𝑀1

– Takes place in orbital plane

– Orbital plane is orthogonal to angular momentum, തℎ = ҧ𝑟 × ሶҧ𝑟

• When considered in terms of an inertial nonrotation frame

– Intersection between (𝑋, 𝑌) plane and orbit plane is line of nodes

– Ω is angle between 𝑋 and line of nodes

– 𝑖 is inclination or tilt from 𝑍
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Two body – Planar motion (2/3)

• Polar coordinates to describe motion in plane

– ത𝑢𝑟: ሷ𝑟 − 𝑟 ሶ𝜃2 = −𝜇/𝑟2

– ത𝑢𝑟: 2 ሶ𝑟 ሶ𝜃 + 𝑟 ሷ𝜃 = 0

• Using substitution, we can show energy relationship to 𝑒

– 𝑒 = 1 +
2𝜀ℎ2

𝜇2

1

2

• And use the planar motion for

– 𝑟 =
Τℎ2 𝜇

1+𝑒 cos(𝜃−𝜔)
=

𝑝

1+𝑒 cos 𝑣
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Two body – Planar motion (3/3)
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Two body – Kepler’s problem (1/2) 

• Unfortunately, no simple relation between 𝑣, true anomaly, and 𝑡
– Useful geometrical relationships

𝑝 = 𝑎 1 − 𝑒2 𝑟𝑝 = 𝑎(1 − 𝑒) 𝑟𝑎 = 𝑎(1 + 𝑒)

𝑏 = 𝑎 1 − 𝑒2

𝑛 = 𝜇/𝑎3

ℎ2 = 𝜇𝑝 = 𝜇𝑎(1 − 𝑒2)

𝑇 = 2𝜋
1

𝑛

𝜀 = −
𝜇

2𝑎

– From the conic section, if 𝑣 is known then distance, 𝑟, can be determined

– Most often 𝑡 is known rather than 𝑣

• Kepler’s equation

– To transform between time and true anomaly we use an alternate angle

– 𝐸, eccentric anomaly

𝐸 − 𝑒 sin 𝐸 = 𝑛 𝑡 − 𝑡𝑝
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Two body – Kepler’s problem (2/2) 

• Kepler’s equation
𝐸 − 𝑒 sin 𝐸 = 𝑛 𝑡 − 𝑡𝑝

– Can now be solved using iterative methods (i.e. Newton Raphson)
𝑔 = 𝐸 − 𝑒 sin𝐸 − 𝑀

– Where 𝑀 = 𝑛(𝑡 − 𝑡𝑝) is the mean anomaly

𝐸𝑘+1 = 𝐸𝑘 −
𝑔

𝑔′
𝑘

– 𝑔′ =
𝑑𝑔

𝑑𝐸
= 1 − 𝑒 cos𝐸 and 𝑘 is the iteration number

𝑟 = 𝑎(1 − 𝑒 cos𝐸)
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Two body – Motion in Space

• Move to three-dimensional space (out of just the orbit plane)

– Need 2 additional parameters for orbit plane location in 3D space

– 𝑖, orbital inclination,

– Ω, right ascension of the ascending node or longitude of ascending node

– cos 𝑖 =
ℎ𝑧
ഥℎ

where 0 ≤ 𝑖 ≤ 180° and ℎ = തℎ

– sinΩ =
ℎ𝑋

ℎ𝑋𝑌
, cosΩ = −

ℎ𝑌

ℎ𝑋𝑌
, where ℎ𝑋𝑌 = ℎ𝑋

2 + ℎ𝑌
2 and 0 ≤ Ω ≤ 360°
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Two body – Greenwich Angle

• Consider the Sun moving relative to the Earth

– Include a body-fixed coordinate system with (𝑥, 𝑦) in equatorial plane

– 𝑥 axis is coincident with intersection of Greenwich meridian and equator

– 𝑧 axis is coincident with the Earth’s angular velocity vector, 𝜔⊕

• Special terms

– Orbit plane of Sun about Earth is the ecliptic

– Inclination, 𝑖 = 𝜖 ≅ 23.5°, is the obliquity of the ecliptic

– Ascending and descending nodes are vernal and autumnal equinoxes, 
respectively

• Greenwich angle, 𝛼𝐺
– Defines orientation of Earth-fixed (𝑥, 𝑦, 𝑧) w/r to vernal equinox

– 𝛼𝐺 = 𝜔⊕ 𝑡 − 𝑡𝑜 + 𝛼𝐺0 where 𝜔⊕ = 2𝜋/86164 rad/sec
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Kepler to ഥ𝑿

• Temporal variations exist in location of vernal equinox

– Necessary to designate a specific epoch for 𝜖 and 

• Assuming initial state is known

– Already determined 𝑖 and Ω, see a previous slide

– 𝑎, 𝑒, 𝜔, and 𝑡𝑝 or 𝑀0 left

– Using 𝜀, specific energy, the semimajor axis is 𝑎 = −
𝜇

2𝜀

– 𝑒 = 1 +
2𝜀ℎ2

𝜇2

1

2

– 𝜔 = 𝜔 + 𝑣 − 𝑣, where we determine 𝜔 + 𝑣 and 𝑣

cos 𝑣 =
1

𝑟0𝑒
𝑝 − 𝑟0 sin 𝑣 =

𝑝

ℎ𝑒

ҧ𝑟0 ∙ ҧ𝑟0
𝑟0

cos(𝜔 + 𝑣) =
𝑋0
𝑟0
cosΩ +

𝑌0
𝑟0
sinΩ sin(𝜔 + 𝑣) =

𝑍0
𝑟0 sin 𝑖
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Kepler to ഥ𝑿

• Eccentric anomaly and mean anomaly are found by

cos 𝐸0 =
𝑟0
𝑎
cos 𝑣 + 𝑒 sin 𝐸0 =

𝑟0
𝑏
sin 𝑣

𝑀0 = 𝐸0 − 𝑒 sin𝐸0 𝑡𝑝 = 𝑡0 −
𝑀0

𝑛
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Kepler to ഥ𝑿 – State Transition Matrix

• State transition matrix, matrizant, propogates 𝑋 and 𝜖

– Δ𝑋 𝑡 = 𝜙 𝑡, 𝑡0 ΔX(t0) where

𝜙 𝑡, 𝑡0 =

𝜕𝑋

𝜕𝑋0
⋯

𝜕𝑋

𝜕 ሶ𝑍0
⋮ ⋱ ⋮
𝜕 ሶ𝑍

𝜕𝑋0
⋯

𝜕 ሶ𝑍

𝜕 ሶ𝑍0
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PREDICT THE ORBIT

Practice problems: The Orbit Problem



Assigned Problems - Overview

• You are given three problems involving orbital motion. They 
have been picked to ensure you have a sufficient understanding 
of orbital mechanics before proceeding. The problems resemble 
numbers 4, 5, 6, 10, 11, and 12 from the textbook. 

• These problems should be complete by Monday, February 4.
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Assigned Problems – Problem 1

• Given the following position and velocity of a satellite

– Expressed in a non-rotating geocentric coordinate system

a) Determine the six orbital elements (a, e, i, Ω, 𝜔, M0)

b) Assuming 𝑋0 is given and two-body motion, predict position and velocity at 𝑡 =
3,000 sec. Determine flight path angle at this time. 

c) Determine the latitude and longitude of the subsatellite point for 𝑡 = 3,000 sec if 𝛼𝐺
at 𝑡 = 0 is 0. Assume the 𝑍 axis of the nonrotating system is coincident with the 𝑧 axis of 
the rotating system. 
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Position (m) Velocity (m/s)

X 7088580.789 -10.20544809

Y -64.326 -522.85385193

Z 920.514 7482.075141



Assigned Problems – Problem 2 (1/2)

• Orbit of CRISTA-SPAS-2

– Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere

The joint venture of DLR and NASA, the small free-flying satellite contains three 
telescopes, four spectrometers, and a GPS receiver on-board. It is deployed 
from the shuttle Discovery on STS-85 in August 1997. Using on-board 
navigation, the receiver measurements are processed in an Earth-centered, 
Earth-fixed coordinate system. 
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August 18, 1997

GPS-T (hrs:min:sec) 00:00:0.000000 00:00:03.000000

x 3325396.441 3309747.175

y 5472597.483 5485240.159

z -2057129.050 -2048664.333

August 19, 1997

GPS-T (hrs:min:sec) 00:00:0.000000 00:00:03.000000

x 4389882.255 4402505.030

y -4444406.953 -4428002.728

z -2508462.520 -2515303.456

https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/sts85


Assigned Problems – Problem 2 (2/2)

a) Demonstrate that the node location is not fixed in space and determine an 
approximate rate of node change (degrees/day) from these positions. 
Compare the node rate with the value predicted by 

ሶΩ = −
3

2
𝐽2

𝑛

1 − 𝑒2 2

𝑎𝑒
𝑎

2

cos 𝑖

b) Determine the inclination of CRISTA-SPAS-2 during the first 3-sec interval 
and the last 3-sec interval. 

Comment: The position vectors determined by GPS in this case are influenced at 
the 100-meter level by Selective Ability, but the error does not significantly 
affect this problem. 
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Assigned Problems – Problem 3 (1/2)

• GLONASS

– Russia’s answer for American GPS

Given a set of initial conditions for a high-altitude GLONASS satellite, 
numerically integrate the equations of motion for one day. 

a) Assuming the satellite is influenced by 𝐽2 only, derive the equations of motion 
in non-rotation coordinates. Assume the nonrotating 𝑍 axis coincides with the 
Earth-fixed 𝑧 axis. 

b) During the integration, compute the Jacobi constant and the 𝑍 component of 
the angular momentum. Are these quantities constant?

c) Plot the six orbital elements as a function of time. 

d) Identify features similar to and different from Fig. 2.3.5
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https://www.glonass-iac.ru/en/GLONASS/


Assigned Problems – Problem 3 (2/2)

e) Compare the node rate predicted by 

ሶΩ = −
3

2
𝐽2

𝑛

1 − 𝑒2 2

𝑎𝑒
𝑎

2

cos 𝑖

with a value estimated from (c). 

f) Compare the amplitude of the semimajor axis periodic term with 

𝑎 𝑡 = ത𝑎 + 3ത𝑛ത𝑎𝐽2
𝑎𝑒
ത𝑎

2

sin2
ҧ𝑖 cos 2𝜔 + 2𝑀

2 ሶ𝜔𝑠 + 2 ሶ𝑀𝑠

g) Plot the ground track. Does the ground track repeat after one day?
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a e i Ω 𝜔 𝑀0

25500.0 km 0.0015 63 deg -60 deg 0 deg 0 deg


