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Lecture 5 — Perturbed Motion

Presenter: Christopher R. Simpson



Recap

* Lecture 4 — Notes posted here

— Classical two-body problem

* Lecture 6 — Coordinate systems and time

* Questions
— Post them to YouTube page

Z N\ .
SAe

S—



https://simpsonaerospace.wordpress.com/2019/01/31/spring-2019-lecture-4-two-body-problem-30-jan-2019/

Agenda

* Perturbed Motion

— Classical example: Lunar problem

— Variation of parameters

— Gravitational perturbations

— Oblateness
— Third-body Effects

— Nongravitational perturbations

* Assigned Problems
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Perturbed Motion — Recap of two body (1/2)

* Relative motion of m, w/r to my

Lad

N
r=20
r3

P+

* Assumptions
— Two point masses/bodies are spherically symmetric

— Gravitational force propagates instantaneously (No relativistic effects)




Perturbed Motion — Recap of two body (2/2)

Previous description of motion is idealized
— Equations of motion can be solved analytically

— Motion simplified to a geometric shape (circle, ellipse, parabola, hyperbola)

Newton
— Told Halley, that the motion of the Moon [in the three body system] “made his head ache
and kept him awake so often that he would think of it no more,” (Moulton, p. 363, 1914).
* No general closed-form solution for three-body problem
— Approximate analytical solutions use two-bodies as a reference

— Approximate or general perturbations solution adds contributing perturbing forces

Numerical solutions

— Perturbed motion represented by a set of ODEs with specified initial conditions (special
perturbations)




Perturbed Motion — Lunar problem (1/2)

* Derive equations of motion for three body problem

— Solve EoM using numerical integration _
. ur A 1
r=— T'_3 + GM3 E — E
'un’ Z 7

— where y = G(M; + M,) and u’' = G(M{ + M3)

.Gﬁu
Il

* Let M1, M,, and M3 represent Earth, the Moon, and the Sun, respectively




Perturbed Motion — Lunar problem (2/2)

* Restricted three-body problem (Szebehely, 1967)
— Sun’s mass is more than 300,000 times greater than Earth
— Moon’s mass is 81 times smaller than Earth
p=GM;
p = GM;
* Can integrate w/o approximation given specified initial conditions
— (Shampine and Gordon, 1975), since Sun is dominant perturbation of the lunar motion
— Rotate about X in ECl frame so Z axis is perpendicular to ecliptic

— Can show osculating elements (orbital elements) are not constant due to perturbations

* Osculating element variation
— Ascending node linear variation with time (secular variation/periodic variations)
— Inclination has no apparent secular but experiences periodic variation

— Secular node rate is negative (regression of the node, ~19.4° per year)
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Perturbed Motion — Variation of parameters

* Temporal variations of Moon’s osculating elements

. U _
F=—D Pt f
r
— Develop solution to ODEs by using variation of parameters
— f is perturbing force

— See Appendix D for differential equations describing change of osculating elements
* In some cases [ is derivable from potential or disturbing function

. f can be categorized as gravitational or nongravitational
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Gravitational — Mass Distribution (1/6)

* Mass distribution

— Two point masses gravitational potential

* Can model mass distribution as collection of point masses

— Potential experienced by point mass, m’, is

U=m'[[[ Gydxdydz/p

where ¥ is the mass density associated with dm, dx dy dz are differential volume, and p is
distance between differential mass and external mass m’

* Spherical harmonics splits Earth into regions

— Allows us to assign mass coefficients/properties to each region
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Gravitational — Mass Distribution (2/6)

* Taking the external mass to be unity, m' =1
Gdm
- U= f —— , where we are integrating over entire mass

— Position vector of m' is 7
— Where (x,V,z) is considered to be body-fixed

— (x,y) equatorial plane and x to Greenwich meridian

* Expand using infinite series

Gd
— Expand U = f _m using infinite series ond Legendre polynomials

U=-— le 0 Pl(cosS)dm

— Where R is distance between origin and dm and P, is Legendre polynomial of degree [
with an argument equal to the cosine of the angle between the two vectors Rand r
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Gravitational — Mass Distribution (3/6)

* Expand the Legendre polynomial into spherical harmonics

— Terms dependent on mass distribution are collected into coefficients

U=C4u
r

0 (00) l
* a l
U = M—Z Pl(sin D), + H?Z Z (76) Py (sin ¢)[Cyy, cos mA + Sy, sin mA]
=1

r
=1 m=1
* Coordinates of m' are now expressed in spherical coordinates (7, ¢, 1)

— ¢ is geocentric latitude

— A is longitude angle

* Scale factors to nondimensionalize C;j,,, and S;,,
— Reference mass, u* = GM"™

— Reference distance, a,
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Gravitational — Mass Distribution (4/6)

* Zonal harmonics (m = 0), J;
— No dependence on longitude

— Circle of latitude alternately positive and negative

* Sectorial harmonics (n = m)

— Sectors alternately positive and negative along lines of longitude

* Tesseral harmonics (n = m)

— Checkerboard array of domains, “square” harmonics

Zonal Harmonics Sectorial Harmonics Tesseral Harmonics
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Gravitational — Mass Distribution (5/6)

Normalized expressions normally used

— Legendre functions normally high numerical values compared to mass coefficients

Degree 1 terms, [, proportional to distance between cm and O

Degree 2 terms proportional to moments and products of inertia

F*=m'VU
= 1+m, VU
T\ T
— If m'/M is very small
" puroo -
r:VU:_r_g-l_fNS

Be careful about whether system used is nonrotating or rotating
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Gravitational — Mass Distribution (6/6)




Gravitational — Oblateness (1/3)

* More than 95% of gravitational force (that’s not 1 /12) is ],

— Potential for the ellipsoid of revolution

U = —5(%)2/2P2<sin $)

* Can relate to orbit elements
sin ¢ = sinisin(w + v)
— Gravitational potential now can be expressed in terms of orbit elements

— Use eccentricity expansions

(N2
U' = —g(f) J2{3/4sin?i[1 — cos(2w + 2M)] — 1/2} + higher order terms

— Can divide contributions into secular and periodic

U' = Us + U,
— Secular
GM ja\2 (3, 1
v == (%) 1o (Fone )
— Periodic
GM ,a,\2 3
U, = — (Fe) I, <Z sin? i cos(Qw + ZM))

Z N\ .
SAe

S—




Gravitational — Oblateness (2/3)

* Which orbit elements affected over time
— a,e,l not affected by time

— (), secular node rate is constant for given a, e, i
N 3] Ae\ 2 _
= —— Zn(—) cosi
§ 2 a

* Application in solar-synchronous satellites
— Constantly aligned with Earth-Sun direction
— Qg = 360°/365.25 days = 1°/day
— In other words, fore = 0,a = 7000 km, and i = 98

* Secular rates of ), w, and M (Kaula, 1966)

: 3 n e\ 2 ,
O = —512(1_—62)2(;) cos i

__]2(1 nz)z( ) (5cos?i—1)

. 3
M, =n+ ]2(1 nz)g/z(a) (3cos?i—1)
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Gravitational — Oblateness (3/3)

* Previous equations (Kaula, 1966) use mean elements

— a,e,l have periodic variations averaged out
— 1 =./u/a3 where @ is the mean valuve

* Can use this for simple model, Secularly Precessing Ellipse

* From Kaula’s linear derivation

. __2m
— Nodal period, P, = Py
20
— Nodal day, D,, = Gt
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Gravitational — Third-body effects

* Consider the two-body case, then add another body

— Not considering the non-uniformity of the gravitational field just yet
. . A; T
— Addition given by f3, = Zj:p“j <A—é — _3)

is the vector between the j body and the satellite

A
]
1; is the vector between the j body and the Earth




Gravitational — Tidal Effects (1/3)

* One side of celestial body experiences greater acceleration
— Redistributes liquid and solid mass of body

— Measured w/r to center of mass

* Rotation of body creates a phase advance

— Accelerates moon

— Tidal locking, moon’s tidal bulge and face match Earth




Gravitational — Tidal Effects (2/3)

* Changes GS position and SC acceleration

* Sun and Moon tidal interaction
— Spring Tides and Neap Tides

Spring Tide




Gravitational — Tidal Effects (2/3)

* Changes GS position and SC acceleration

* Sun and Moon tidal interaction

— Spring Tides and Neap Tides




Gravitational — Tidal Effects (3/3)

* Tidal potential approximated by

Uy = .Umoon 2 k., Pn(cos Y)

* Love numbers, k,,, describe how deformable celestial body is

— 7,1 describe position on affected body looking down on orbital plane

* Variations in topology change amplitudes of tides

Celestial Body Ocean Solid
Sun, © 0.82 ft 0.60 ft
Moon, D 1.8 ft 1.3 ft
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Applications — Lagrange Points (1/2)




Applications — Lagrange Points (2/2)

* Points where gravitational pull is balanced
— Exists between all multibody systems

— Sun-Earth Lagrange points most commonly used /considered

* Several current missions either use or will pass L points
— OSIRIS-REx will swing by L4 looking for Earth Trojans

— JWST will orbit L2 to examine early origins of universe
— Solar and Heliospheric Observatory (SOHQO) orbits L1




Perturbed Motion — Nongravitational

* Atmospheric Resistance (Drag)

CpA
- fD = ——p( )vv force of drag acting opposite to movement

. .. . . CpA
— Ballistic coefficient, (%)

— At low altitudes (~350 km) the atmospheric density is 10711 of sea level
— Mean free path increases to meters

— Drag removes energy from orbit
— Secular decay in semimajor axis and eccentricity

— Decay in a will determine lifetime of satellite

* Some re-entry numbers

— ~170 million pieces of space debris
— Less than 0.2% tracked
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https://www.nesdis.noaa.gov/content/does-space-junk-fall-sky

Perturbed Motion — Nongravitational

* Solar radiation pressure
— Transfer of momentum through photons
1%
= —P—CRil
fSRP m R
— P is the momentum flux

— A is cross-sectional area

— Cp, reflectivity coefficient

— v, eclipse factor for when satellite is in shadow
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Practice problems: The Orbit Problem

PREDICT THE ORBIT



Assigned Problems - Overview

* You are given three problems involving orbital motion. They
have been picked to ensure you have a sufficient understanding

of orbital mechanics before proceeding. The problems resemble
numbers 4, 5,6, 10, 11, and 12 from the textbook.

* These problems should be complete by Friday, February 8.




Assigned Problems — Problem 1

* Given the following position and velocity of a satellite

— Expressed in a non-rotating geocentric coordinate system

Position (m) Velocity (m/s)
X 7088580.789 -10.20544809
Y -64.326 -522.85385193
Z 220.514 7482.075141

a) Determine the six orbital elements (q, e, i, (, w, M)

b) Assuming X, is given and two-body motion, predict position and velocity at t =
3,000 sec. Determine flight path angle at this time.

c) Determine the latitude and longitude of the subsatellite point for t = 3,000 sec if ag
at t = 0 is 0. Assume the Z axis of the nonrotating system is coincident with the z axis of
the rotating system.
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Assigned Problems — Problem 2 (1/2)

* Orbit of CRISTA-SPAS-2

— Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere

The joint venture of DLR and NASA, the small free-flying satellite contains three
telescopes, four spectrometers, and a GPS receiver on-board. It is deployed
from the shuttle Discovery on STS-85 in August 1997. Using on-board
navigation, the receiver measurements are processed in an Earth-centered,
Earth-fixed coordinate system.

August 18, 1997
GPS-T (hrs:min:sec) 00:00:0.000000 00:00:03.000000

X 3325396.441 3309747.175
y 5472597.483 5485240.159
z -2057129.050 -2048664.333

August 19, 1997
GPS-T (hrs:min:sec) 00:00:0.000000 00:00:03.000000

x 4389882.255 4402505.030
y -4444406.953 -4428002.728
z -2508462.520 -2515303.456
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https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/sts85

Assigned Problems — Problem 2 (2/2)

a) Demonstrate that the node location is not fixed in space and determine an

approximate rate of node change (degrees/day) from these positions.

Compare the node rate with the value predicted by

3 n AN ,
( ) CoS1i

a

b) Determine the inclination of CRISTA-SPAS-2 during the first 3-sec interval
and the last 3-sec interval.

Comment: The position vectors determined by GPS in this case are influenced at
the 100-meter level by Selective Ability, but the error does not significantly
affect this problem.
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Assigned Problems — Problem 3 (1/2)

* GLONASS

— Russia’s answer for American GPS

Given a set of initial conditions for a high-altitude GLONASS satellite,
numerically integrate the equations of motion for one day.

a) Assuming the satellite is influenced by J, only, derive the equations of motion
in non-rotation coordinates. Assume the nonrotating Z axis coincides with the
Earth-fixed z axis.

b) During the integration, compute the Jacobi constant and the Z component of
the angular momentum. Are these quantities constant?

c) Plot the six orbital elements as a function of time.

d) Identify features similar to and different from Fig. 2.3.5
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https://www.glonass-iac.ru/en/GLONASS/

Assigned Problems — Problem 3 (2/2)

e) Compare the node rate predicted by

with a value estimated from (c).

f) Compare the amplitude of the semimajor axis periodic term with

a2 t(cos(2w + 2M
a(t) = a+ 3naj, (Ee) sin? ( > ( Yy )
wS S

g) Plot the ground track. Does the ground track repeat after one day?

a e i Q) w MO

25500.0 km  0.0015 63 deg -60 deg O deg 0 deg
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