Statistical Orbit Determination

Lecture 5 – Perturbed Motion

Presenter: Christopher R. Simpson

Recap

- Lecture 4 Notes posted <u>here</u>
 - Classical two-body problem
- Lecture 6 Coordinate systems and time
- Questions
 - Post them to YouTube page

Agenda

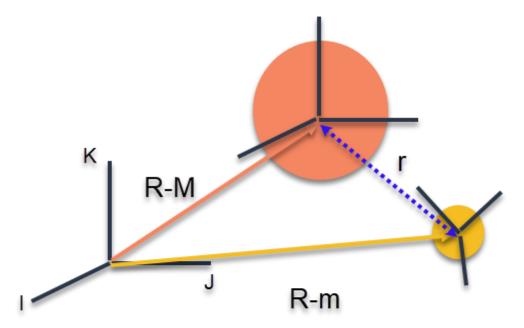
- Perturbed Motion
 - Classical example: Lunar problem
 - Variation of parameters
 - Gravitational perturbations
 - Oblateness
 - Third-body Effects
 - Nongravitational perturbations
- Assigned Problems

Perturbed Motion – Recap of two body (1/2)

• Relative motion of m_2 w/r to m_1

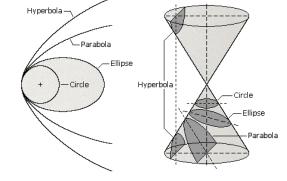
$$\ddot{\vec{r}} + \frac{\mu}{r^3} \ \vec{r} = 0$$

- Assumptions
 - Two point masses/bodies are spherically symmetric
 - Gravitational force propagates instantaneously (No relativistic effects)



Perturbed Motion – Recap of two body (2/2)

- Previous description of motion is idealized
 - Equations of motion can be solved analytically
 - Motion simplified to a geometric shape (circle, ellipse, parabola, hyperbola)
- Newton
 - Told Halley, that the motion of the Moon [in the three body system] "made his head ache and kept him awake so often that he would think of it no more," (Moulton, p. 363, 1914).
- No general closed-form solution for three-body problem
 - Approximate analytical solutions use two-bodies as a reference
 - Approximate or general perturbations solution adds contributing perturbing forces
- Numerical solutions
 - Perturbed motion represented by a set of ODEs with specified initial conditions (special perturbations)



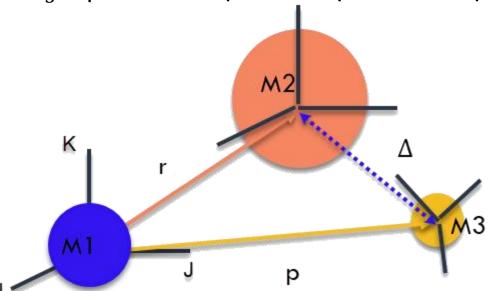
Perturbed Motion – Lunar problem (1/2)

- Derive equations of motion for three body problem
 - Solve EoM using numerical integration

$$\ddot{\bar{r}} = -\frac{\mu \bar{r}}{r^3} + G M_3 \left(\frac{\overline{\Delta}}{\Delta^3} - \frac{\bar{r}_p}{r_p^3} \right)$$

$$\ddot{\bar{r}}_p = -\frac{{\mu'}^{\bar{r}}}{r^3} + G M_2 \left(\frac{\overline{\Delta}}{\Delta^3} + \frac{\bar{r}}{r^3} \right)$$

- where $\mu=G(M_1+M_2)$ and $\mu'=G(M_1+M_3)$
- Let M_1 , M_2 , and M_3 represent Earth, the Moon, and the Sun, respectively



Perturbed Motion – Lunar problem (2/2)

- Restricted three-body problem (Szebehely, 1967)
 - Sun's mass is more than 300,000 times greater than Earth
 - Moon's mass is 81 times smaller than Earth

$$\mu = GM_1$$

$$\mu' = GM_3$$

- Can integrate w/o approximation given specified initial conditions
 - (Shampine and Gordon, 1975), since Sun is dominant perturbation of the lunar motion
 - Rotate about X in ECI frame so Z axis is perpendicular to ecliptic
 - Can show osculating elements (orbital elements) are not constant due to perturbations
- Osculating element variation
 - Ascending node linear variation with time (secular variation/periodic variations)
 - Inclination has no apparent secular but experiences periodic variation
 - Secular node rate is negative (regression of the node, $\sim 19.4^{\circ}$ per year)

Perturbed Motion – Variation of parameters

Temporal variations of Moon's osculating elements

$$\ddot{\vec{r}} = -\frac{\mu}{r^3} \, \vec{r} + \bar{f}$$

- Develop solution to ODEs by using variation of parameters
- \bar{f} is perturbing force
- See Appendix D for differential equations describing change of osculating elements
- In some cases $ar{f}$ is derivable from potential or disturbing function
- $ar{f}$ can be categorized as gravitational or nongravitational

Gravitational – Mass Distribution (1/6)

- Mass distribution
 - Two point masses gravitational potential

$$U = \frac{GM_1M_2}{r}$$

$$\bar{F} = \nabla U = \frac{GM_1M_2}{r^3}\bar{r}$$

- Can model mass distribution as collection of point masses
 - Potential experienced by point mass, m^\prime , is

$$U = m' \int \int \int G \gamma \, dx \, dy \, dz / \rho$$

where γ is the mass density associated with dm, dx dy dz are differential volume, and ρ is distance between differential mass and external mass m'

- Spherical harmonics splits Earth into regions
 - Allows us to assign mass coefficients/properties to each region

Gravitational – Mass Distribution (2/6)

- Taking the external mass to be unity, $m^\prime=1$
 - $-U=\int_{M}rac{Gdm}{
 ho}$, where we are integrating over entire mass
 - Position vector of m' is \bar{r}
 - Where (x, y, z) is considered to be body-fixed
 - -(x,y) equatorial plane and x to Greenwich meridian
- Expand using infinite series
 - Expand $U=\int_{M}\frac{Gdm}{\rho}$ using infinite series and Legendre polynomials

$$U = \frac{G}{r} \int_{M} \sum_{l=0}^{\infty} \left(\frac{R}{r}\right)^{l} P_{l}(\cos S) dm$$

- Where R is distance between origin and dm and P_l is Legendre polynomial of degree l with an argument equal to the cosine of the angle between the two vectors R and r

Gravitational – Mass Distribution (3/6)

- Expand the Legendre polynomial into spherical harmonics
 - Terms dependent on mass distribution are collected into coefficients

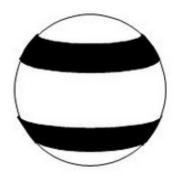
$$U = \frac{\mu}{r} + U'$$

$$U' = -\frac{\mu^*}{r} \sum_{l=1}^{\infty} \left(\frac{a_e}{r}\right)^l P_l(\sin\phi) J_l + \frac{\mu^*}{r} \sum_{l=1}^{\infty} \sum_{m=1}^{l} \left(\frac{a_e}{r}\right)^l P_{lm}(\sin\phi) [C_{lm}\cos m\lambda + S_{lm}\sin m\lambda]$$

- Coordinates of m' are now expressed in spherical coordinates (r,ϕ,λ)
 - ϕ is geocentric latitude
 - λ is longitude angle
- Scale factors to nondimensionalize \mathcal{C}_{lm} and \mathcal{S}_{lm}
 - Reference mass, $\mu^* = GM^*$
 - Reference distance, a_e

Gravitational – Mass Distribution (4/6)

- Zonal harmonics (m=0), J_L
 - No dependence on longitude
 - Circle of latitude alternately positive and negative
- Sectorial harmonics (n = m)
 - Sectors alternately positive and negative along lines of longitude
- Tesseral harmonics $(n \neq m)$
 - Checkerboard array of domains, "square" harmonics



Zonal Harmonics

Sectorial Harmonics

Tesseral Harmonics

Gravitational – Mass Distribution (5/6)

- Normalized expressions normally used
 - Legendre functions normally high numerical values compared to mass coefficients
- Degree 1 terms, l, proportional to distance between cm and O
- Degree 2 terms proportional to moments and products of inertia

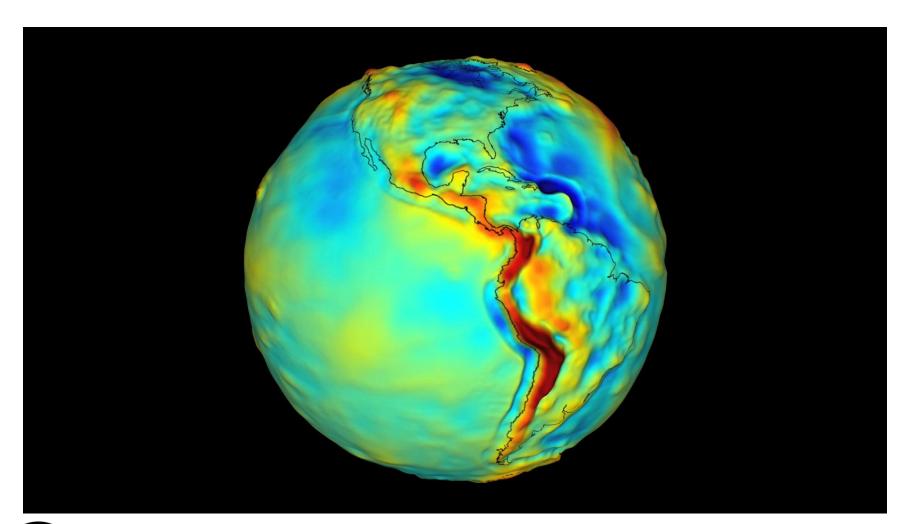
$$ar{F}^* = m'
abla \mathbf{U}$$
 $\ddot{r} = \left(1 + rac{m'}{M}
ight)
abla \mathbf{U}$

- If m'/M is very small

$$\ddot{\bar{r}} = \nabla U = -\frac{\mu \bar{r}}{r^3} + \bar{f}_{NS}$$

Be careful about whether system used is nonrotating or rotating

Gravitational – Mass Distribution (6/6)



Gravitational – Oblateness (1/3)

- More than 95% of gravitational force (that's not μ/r^2) is J_2
 - Potential for the ellipsoid of revolution

$$U' = -\frac{\mu}{r} \left(\frac{a_e}{r}\right)^2 J_2 P_2(\sin\phi)$$

Can relate to orbit elements

$$\sin \phi = \sin i \sin(\omega + v)$$

- Gravitational potential now can be expressed in terms of orbit elements
- Use eccentricity expansions

$$U' = -\frac{\mu}{a} \left(\frac{a_e}{a}\right)^2 J_2 \{3/4 \sin^2 i [1 - \cos(2\omega + 2M)] - 1/2\} + \text{ higher order terms}$$

- Can divide contributions into secular and periodic

$$U' = U_s + U_p$$

Secular

$$U_s = -\frac{GM}{a} \left(\frac{a_e}{a}\right)^2 J_2 \left(\frac{3}{4} \sin^2 i - \frac{1}{2}\right)$$

- Periodic

$$U_p = \frac{GM}{a} \left(\frac{a_e}{a}\right)^2 J_2 \left(\frac{3}{4} \sin^2 i \cos(2\omega + 2M)\right)$$

Gravitational – Oblateness (2/3)

- Which orbit elements affected over time
 - -a, e, i not affected by time
 - $\dot{\Omega}_S$, secular node rate is constant for given a,e,i $\dot{\Omega}_S \cong -\frac{3}{2}J_2n\left(\frac{a_e}{a}\right)^2\cos i$

$$\dot{\Omega}_s \cong -\frac{3}{2}J_2n\left(\frac{a_e}{a}\right)^2\cos t$$

- Application in solar-synchronous satellites
 - Constantly aligned with Earth-Sun direction
 - $\dot{\Omega}_s = 360^\circ/365.25 \text{ days} \cong 1^\circ/\text{day}$
 - In other words, for $e \approx 0$, $a \approx 7000$ km, and $i \approx 98$
- Secular rates of Ω, ω , and M (Kaula, 1966)

$$\dot{\Omega}_s = -\frac{3}{2}J_2 \frac{n}{(1-e^2)^2} \left(\frac{a_e}{a}\right)^2 \cos i$$

$$\dot{\omega}_S = \frac{3}{4} J_2 \frac{n}{(1 - e^2)^2} \left(\frac{a_e}{a}\right)^2 (5\cos^2 i - 1)$$

$$\dot{M}_S = \bar{n} + \frac{3}{4} J_2 \frac{n}{(1 - e^2)^{3/2}} \left(\frac{a_e}{a}\right)^2 (3\cos^2 i - 1)$$

Gravitational – Oblateness (3/3)

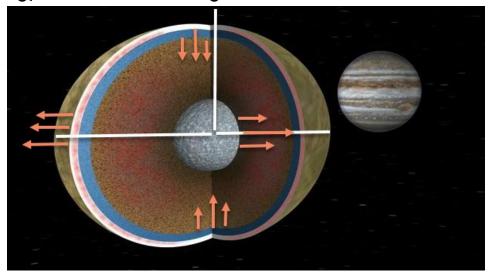
- Previous equations (Kaula, 1966) use mean elements
 - -a, e, i have periodic variations averaged out
 - $\bar{n}=\sqrt{\mu/\bar{a}^3}$ where \bar{a} is the mean value
- Can use this for simple model, Secularly Precessing Ellipse
- From Kaula's linear derivation
 - Nodal period, $P_n=rac{2\pi}{\dot{\omega}_S+\dot{M}_S}$
 - Nodal day, $D_n = \frac{2\Pi}{\dot{\Omega}_S + \omega_P}$

Gravitational – Third-body effects

- Consider the two-body case, then add another body
 - Not considering the non-uniformity of the gravitational field just yet
 - Addition given by $f_{3b}=\sum_{j=1}^{n_p}\mu_j\left(rac{\overline{\Delta}_j}{\Delta_j^3}-rac{\overline{\mathbf{r}}_j}{\mathbf{r}_j^3}
 ight)$
 - $\overline{\Delta}_j$ is the vector between the j body and the satellite
 - $ar{r}_j$ is the vector between the j body and the Earth

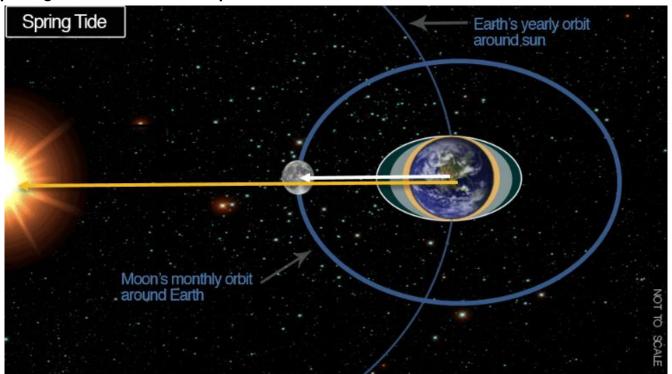
Gravitational – Tidal Effects (1/3)

- One side of celestial body experiences greater acceleration
 - Redistributes liquid and solid mass of body
 - Measured w/r to center of mass
- Rotation of body creates a phase advance
 - Accelerates moon
 - Tidal locking, moon's tidal bulge and face match Earth



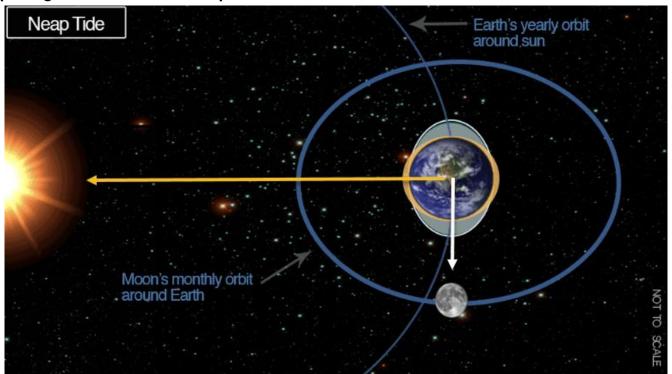
Gravitational – Tidal Effects (2/3)

- Changes GS position and SC acceleration
- Sun and Moon tidal interaction
 - Spring Tides and Neap Tides



Gravitational – Tidal Effects (2/3)

- Changes GS position and SC acceleration
- Sun and Moon tidal interaction
 - Spring Tides and Neap Tides



Gravitational – Tidal Effects (3/3)

Tidal potential approximated by

$$U_t = -\frac{\mu_{\text{moon}}}{R} \sum_{n=2}^{\infty} k_n \left(\frac{r}{R}\right)^n P_n(\cos \psi)$$

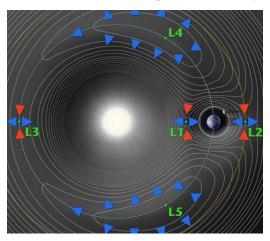
- ullet Love numbers, k_n , describe how deformable celestial body is
 - -r, ψ describe position on affected body looking down on orbital plane
- Variations in topology change amplitudes of tides

Celestial Body	Ocean	Solid
Sun, ⊙	0.82 ft	0.60 ft
Moon, ⊃	1.8 ft	1.3 ft

Applications – Lagrange Points (1/2)

Applications – Lagrange Points (2/2)

- Points where gravitational pull is balanced
 - Exists between all multibody systems
 - Sun-Earth Lagrange points most commonly used/considered
- Several current missions either use or will pass L points
 - OSIRIS-REx will swing by L4 looking for Earth Trojans
 - JWST will orbit L2 to examine early origins of universe
 - Solar and Heliospheric Observatory (SOHO) orbits L1



Perturbed Motion - Nongravitational

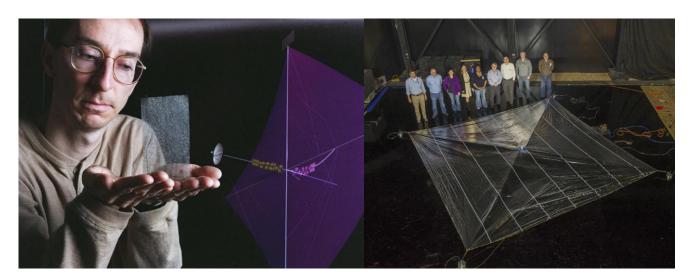
- Atmospheric Resistance (Drag)
 - $-\bar{f}_D = -\frac{1}{2}\rho\left(\frac{C_DA}{m}\right)v\bar{v}$, force of drag acting opposite to movement
 - Ballistic coefficient, $\left(\frac{C_D A}{m}\right)$
 - At low altitudes ($\sim\!350$ km) the atmospheric density is 10^{-11} of sea level
 - Mean free path increases to meters
 - Drag removes energy from orbit
 - Secular decay in semimajor axis and eccentricity
 - Decay in a will determine lifetime of satellite
- Some re-entry numbers
 - ~170 million pieces of space debris
 - Less than 0.2% tracked

Perturbed Motion - Nongravitational

- Solar radiation pressure
 - Transfer of momentum through photons

$$f_{SRP} = -P \frac{vA}{m} C_R \bar{u}$$

- P is the momentum flux
- A is cross-sectional area
- C_R , reflectivity coefficient
- -v, eclipse factor for when satellite is in shadow



Practice problems: The Orbit Problem

PREDICT THE ORBIT

Assigned Problems - Overview

- You are given three problems involving orbital motion. They have been picked to ensure you have a sufficient understanding of orbital mechanics before proceeding. The problems resemble numbers 4, 5, 6, 10, 11, and 12 from the textbook.
- These problems should be complete by Friday, February 8.

Assigned Problems - Problem 1

- Given the following position and velocity of a satellite
 - Expressed in a non-rotating geocentric coordinate system

	Position (m)	Velocity (m/s)
X	7088580.789	-10.20544809
Υ	-64.326	-522.85385193
Z	920.514	7482.075141

- a) Determine the six orbital elements (a, e, i, Ω , ω , M_0)
- b) Assuming X_0 is given and two-body motion, predict position and velocity at t=3,000 sec. Determine flight path angle at this time.
- c) Determine the latitude and longitude of the subsatellite point for $t=3{,}000$ sec if α_G at t=0 is 0. Assume the Z axis of the nonrotating system is coincident with the z axis of the rotating system.

Assigned Problems – Problem 2 (1/2)

Orbit of CRISTA-SPAS-2

- Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere

The joint venture of DLR and NASA, the small free-flying satellite contains three telescopes, four spectrometers, and a GPS receiver on-board. It is deployed from the shuttle Discovery on STS-85 in August 1997. Using on-board navigation, the receiver measurements are processed in an Earth-centered, Earth-fixed coordinate system.

August 18, 1997						
GPS-T (hrs:min:sec)	00:00:0.00000	00:00:03.000000				
X	3325396.441	3309747.175				
У	5472597.483	5485240.159				
Z	-2057129.050	-2048664.333				
	August 19, 1997					
GPS-T (hrs:min:sec)	00:00:0.00000	00:00:03.000000				
X	4389882.255	4402505.030				
У	-4444406.953	-4428002.728				
Z	-2508462.520	-2515303.456				

Assigned Problems – Problem 2 (2/2)

a) Demonstrate that the node location is not fixed in space and determine an approximate rate of node change (degrees/day) from these positions. Compare the node rate with the value predicted by

Compare the node rate with the value predicted by
$$\dot{\Omega}=-\frac{3}{2}J_2\,\frac{n}{(1-e^2)^2}\Big(\frac{a_e}{a}\Big)^2\cos i$$

b) Determine the inclination of CRISTA-SPAS-2 during the first 3-sec interval and the last 3-sec interval.

Comment: The position vectors determined by GPS in this case are influenced at the 100-meter level by Selective Ability, but the error does not significantly affect this problem.

Assigned Problems – Problem 3 (1/2)

GLONASS

- Russia's answer for American GPS

Given a set of initial conditions for a high-altitude GLONASS satellite, numerically integrate the equations of motion for one day.

- a) Assuming the satellite is influenced by J_2 only, derive the equations of motion in non-rotation coordinates. Assume the nonrotating Z axis coincides with the Earth-fixed z axis.
- b) During the integration, compute the Jacobi constant and the ${\cal Z}$ component of the angular momentum. Are these quantities constant?
- c) Plot the six orbital elements as a function of time.
- d) Identify features similar to and different from Fig. 2.3.5

Assigned Problems – Problem 3 (2/2)

e) Compare the node rate predicted by

$$\dot{\Omega} = -\frac{3}{2}J_2 \frac{n}{(1-e^2)^2} \left(\frac{a_e}{a}\right)^2 \cos i$$

with a value estimated from (c).

f) Compare the amplitude of the semimajor axis periodic term with

$$a(t) = \bar{a} + 3\bar{n}\bar{a}J_2 \left(\frac{a_e}{\bar{a}}\right)^2 \sin^2 \frac{\bar{\iota}(\cos(2\omega + 2M))}{2\dot{\omega}_s + 2\dot{M}_s}$$

g) Plot the ground track. Does the ground track repeat after one day?

a	е	i	Ω	ω	M_0
25500.0 km	0.0015	63 deg	-60 deg	0 deg	0 deg

