
Statistical Orbit Determination

Lecture 5 – Perturbed Motion

Presenter: Christopher R. Simpson



Recap

• Lecture 4 – Notes posted here

– Classical two-body problem

• Lecture 6 – Coordinate systems and time

• Questions

– Post them to YouTube page
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https://simpsonaerospace.wordpress.com/2019/01/31/spring-2019-lecture-4-two-body-problem-30-jan-2019/


Agenda

• Perturbed Motion

– Classical example: Lunar problem

– Variation of parameters

– Gravitational perturbations

– Oblateness

– Third-body Effects

– Nongravitational perturbations

• Assigned Problems
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Perturbed Motion – Recap of two body (1/2)

• Relative motion of 𝑚2 w/r to 𝑚1

ሷԦ𝑟 +
𝜇

𝑟3
Ԧ𝑟 = 0

• Assumptions

– Two point masses/bodies are spherically symmetric

– Gravitational force propagates instantaneously (No relativistic effects)
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Perturbed Motion – Recap of two body (2/2)

• Previous description of motion is idealized

– Equations of motion can be solved analytically

– Motion simplified to a geometric shape (circle, ellipse, parabola, hyperbola)

• Newton

– Told Halley, that the motion of the Moon [in the three body system] “made his head ache 
and kept him awake so often that he would think of it no more,” (Moulton, p. 363, 1914).

• No general closed-form solution for three-body problem

– Approximate analytical solutions use two-bodies as a reference

– Approximate or general perturbations solution adds contributing perturbing forces

• Numerical solutions

– Perturbed motion represented by a set of ODEs with specified initial conditions (special 
perturbations)
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Perturbed Motion – Lunar problem (1/2)

• Derive equations of motion for three body problem

– Solve EoM using numerical integration

ሷ ҧ𝑟 = −
𝜇 ҧ𝑟

𝑟3
+ 𝐺𝑀3

ഥΔ

Δ3
−

ҧ𝑟𝑝

𝑟𝑝
3

ሷ ҧ𝑟𝑝 = −
𝜇′ ҧ𝑟

𝑟3
+ 𝐺𝑀2

ഥΔ

Δ3
+

ҧ𝑟

𝑟3

– where 𝜇 = 𝐺 𝑀1 +𝑀2 and 𝜇′ = 𝐺 𝑀1 +𝑀3

• Let 𝑀1, 𝑀2, and 𝑀3 represent Earth, the Moon, and the Sun, respectively
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Perturbed Motion – Lunar problem (2/2)

• Restricted three-body problem (Szebehely, 1967)

– Sun’s mass is more than 300,000 times greater than Earth

– Moon’s mass is 81 times smaller than Earth
𝜇 = 𝐺𝑀1
𝜇′ = 𝐺𝑀3

• Can integrate w/o approximation given specified initial conditions

– (Shampine and Gordon, 1975), since Sun is dominant perturbation of the lunar motion

– Rotate about 𝑋 in ECI frame so 𝑍 axis is perpendicular to ecliptic

– Can show osculating elements (orbital elements) are not constant due to perturbations

• Osculating element variation

– Ascending node linear variation with time (secular variation/periodic variations)

– Inclination has no apparent secular but experiences periodic variation

– Secular node rate is negative (regression of the node, ~19.4° per year)
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Perturbed Motion – Variation of parameters

• Temporal variations of Moon’s osculating elements

ሷԦ𝑟 = −
𝜇

𝑟3
Ԧ𝑟 + ҧ𝑓

– Develop solution to ODEs by using variation of parameters

– ҧ𝑓 is perturbing force

– See Appendix D for differential equations describing change of osculating elements

• In some cases ҧ𝑓 is derivable from potential or disturbing function

• ҧ𝑓 can be categorized as gravitational or nongravitational
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Gravitational – Mass Distribution (1/6)

• Mass distribution

– Two point masses gravitational potential

𝑈 =
𝐺𝑀1𝑀2

𝑟

ത𝐹 = ∇𝑈 =
𝐺𝑀1𝑀2

𝑟3
ҧ𝑟

• Can model mass distribution as collection of point masses

– Potential experienced by point mass, 𝑚′, is

𝑈 = 𝑚′∫ ∫ ∫ Τ𝐺𝛾 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝜌

where 𝛾 is the mass density associated with 𝑑𝑚, 𝑑𝑥 𝑑𝑦 𝑑𝑧 are differential volume, and 𝜌 is 
distance between differential mass and external mass 𝑚′

• Spherical harmonics splits Earth into regions

– Allows us to assign mass coefficients/properties to each region
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Gravitational – Mass Distribution (2/6)

• Taking the external mass to be unity, 𝑚′ = 1

– 𝑈 = ∫𝑀
𝐺𝑑𝑚

𝜌
, where we are integrating over entire mass

– Position vector of 𝑚′ is ҧ𝑟

– Where (𝑥, 𝑦, 𝑧) is considered to be body-fixed

– (𝑥, 𝑦) equatorial plane and 𝑥 to Greenwich meridian

• Expand using infinite series

– Expand 𝑈 = ∫𝑀
𝐺𝑑𝑚

𝜌
using infinite series and Legendre polynomials

𝑈 =
𝐺

𝑟
න
𝑀

∑𝑙=0
∞

𝑅

𝑟

𝑙

𝑃𝑙 cos 𝑆 𝑑𝑚

– Where 𝑅 is distance between origin and 𝑑𝑚 and 𝑃𝑙 is Legendre polynomial of degree 𝑙
with an argument equal to the cosine of the angle between the two vectors 𝑅and 𝑟
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Gravitational – Mass Distribution (3/6)

• Expand the Legendre polynomial into spherical harmonics

– Terms dependent on mass distribution are collected into coefficients

𝑈 =
𝜇

𝑟
+ 𝑈′

𝑈′ = −
𝜇∗

𝑟
෍

𝑙=1

∞
𝑎𝑒
𝑟

𝑙

𝑃𝑙 sin𝜙 𝐽𝑙 +
𝜇∗

𝑟
෍

𝑙=1

∞

෍

𝑚=1

𝑙
𝑎𝑒
𝑟

𝑙

𝑃𝑙𝑚 sin𝜙 𝐶𝑙𝑚 cos𝑚𝜆 + 𝑆𝑙𝑚 sin𝑚𝜆

• Coordinates of 𝑚′ are now expressed in spherical coordinates (𝑟, 𝜙, 𝜆)
– 𝜙 is geocentric latitude

– 𝜆 is longitude angle

• Scale factors to nondimensionalize 𝐶𝑙𝑚 and 𝑆𝑙𝑚
– Reference mass, 𝜇∗ = 𝐺𝑀∗

– Reference distance, 𝑎𝑒
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Gravitational – Mass Distribution (4/6)

• Zonal harmonics 𝑚 = 0 , 𝐽𝑙
– No dependence on longitude

– Circle of latitude alternately positive and negative

• Sectorial harmonics (𝑛 = 𝑚)
– Sectors alternately positive and negative along lines of longitude

• Tesseral harmonics 𝑛 ≠ 𝑚
– Checkerboard array of domains, “square” harmonics
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Gravitational – Mass Distribution (5/6)

• Normalized expressions normally used

– Legendre functions normally high numerical values compared to mass coefficients

• Degree 1 terms, 𝑙, proportional to distance between cm and 𝑂

• Degree 2 terms proportional to moments and products of inertia
ത𝐹∗ = 𝑚′∇U

ሷҧ𝑟 = 1 +
𝑚′

𝑀
∇U

– If 𝑚′/𝑀 is very small

ሷ ҧ𝑟 = ∇U = −
𝜇 ҧ𝑟

𝑟3
+ ҧ𝑓𝑁𝑆

• Be careful about whether system used is nonrotating or rotating
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Gravitational – Mass Distribution (6/6)
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• Jacobi Constant

– If the rotating coordinate system angular velocity w/r to the inertial, 𝜔𝑐, is constant such 

that ഥ𝜔𝑐 = 𝜔𝑐
෠𝑘 the energy-like integral exists

𝑣2

2
−
𝜔𝑐
2 𝑥2 + 𝑦2

2
−
𝜇

𝑟
− 𝑈′ = 𝐾

– Where 𝐾 is the Jacobi constant



Gravitational – Oblateness (1/3)

• More than 95% of gravitational force (that’s not 𝜇/𝑟2) is 𝐽2
– Potential for the ellipsoid of revolution

𝑈′ = −
𝜇

𝑟

𝑎𝑒
𝑟

2

𝐽2𝑃2 sin𝜙

• Can relate to orbit elements
sin𝜙 = sin 𝑖 sin(𝜔 + 𝑣)

– Gravitational potential now can be expressed in terms of orbit elements

– Use eccentricity expansions

𝑈′ = −
𝜇

𝑎

𝑎𝑒
𝑎

2

𝐽2 Τ3 4 sin2 𝑖 1 − cos 2𝜔 + 2𝑀 − Τ1 2 + higher order terms

– Can divide contributions into secular and periodic

𝑈′ = 𝑈𝑠 + 𝑈𝑝
– Secular

𝑈𝑠 = −
𝐺𝑀

𝑎

𝑎𝑒
𝑎

2

𝐽2
3

4
sin2 𝑖 −

1

2

– Periodic

𝑈𝑝 =
𝐺𝑀

𝑎

𝑎𝑒
𝑎

2

𝐽2
3

4
sin2 𝑖 cos 2𝜔 + 2𝑀
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Gravitational – Oblateness (2/3)

• Which orbit elements affected over time

– 𝑎, 𝑒, 𝑖 not affected by time

– ሶΩ𝑠, secular node rate is constant for given 𝑎, 𝑒, 𝑖

ሶΩ𝑠 ≅ −
3

2
𝐽2𝑛

𝑎𝑒
𝑎

2

cos 𝑖

• Application in solar-synchronous satellites

– Constantly aligned with Earth-Sun direction

– ሶΩ𝑠 = 360°/365.25 days ≅ 1°/day

– In other words, for 𝑒 ≈ 0, 𝑎 ≈ 7000 km, and 𝑖 ≈ 98

• Secular rates of Ω,𝜔, and 𝑀 (Kaula, 1966)

ሶΩ𝑠 = −
3

2
𝐽2

𝑛

1 − 𝑒2 2

𝑎𝑒
𝑎

2

cos 𝑖

ሶ𝜔𝑠 =
3

4
𝐽2

𝑛

1 − 𝑒2 2

𝑎𝑒
𝑎

2

5 cos2 𝑖 − 1

ሶ𝑀𝑠 = ത𝑛 +
3

4
𝐽2

𝑛

1 − 𝑒2 3/2

𝑎𝑒
𝑎

2

3 cos2 𝑖 − 1
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Gravitational – Oblateness (3/3)

• Previous equations (Kaula, 1966) use mean elements

– 𝑎, 𝑒, 𝑖 have periodic variations averaged out

– ത𝑛 = 𝜇/ത𝑎3 where ത𝑎 is the mean value

• Can use this for simple model, Secularly Precessing Ellipse

• From Kaula’s linear derivation

– Nodal period, 𝑃𝑛 =
2𝜋

ሶ𝜔𝑠+ ሶ𝑀𝑠

– Nodal day, 𝐷𝑛 =
2Π

ሶΩ𝑠+𝜔𝑒
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Gravitational – Third-body effects

• Consider the two-body case, then add another body

– Not considering the non-uniformity of the gravitational field just yet

– Addition given by 𝑓3𝑏 = ∑
𝑗=1

𝑛𝑝 𝜇𝑗
ഥΔ𝑗

Δ𝑗
3 −

തr𝑗

r𝑗
3

– ഥΔ𝑗 is the vector between the 𝑗 body and the satellite

– ҧ𝑟𝑗 is the vector between the 𝑗 body and the Earth
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Gravitational – Tidal Effects (1/3)
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• One side of celestial body experiences greater acceleration

– Redistributes liquid and solid mass of body

– Measured w/r to center of mass

• Rotation of body creates a phase advance

– Accelerates moon

– Tidal locking, moon’s tidal bulge and face match Earth



Gravitational – Tidal Effects (2/3)
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• Changes GS position and SC acceleration

• Sun and Moon tidal interaction

– Spring Tides and Neap Tides



Gravitational – Tidal Effects (2/3)
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• Changes GS position and SC acceleration

• Sun and Moon tidal interaction

– Spring Tides and Neap Tides



Gravitational – Tidal Effects (3/3)
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• Tidal potential approximated by

𝑈𝑡 = −
𝜇moon

𝑅
෍

𝑛=2

∞

𝑘𝑛
𝑟

𝑅

𝑛

𝑃𝑛(cos 𝜓)

• Love numbers, 𝑘𝑛, describe how deformable celestial body is

– 𝑟, 𝜓 describe position on affected body looking down on orbital plane

• Variations in topology change amplitudes of tides

Celestial Body Ocean Solid

Sun, ☉ 0.82 ft 0.60 ft

Moon, ☽︎ 1.8 ft 1.3 ft



Applications – Lagrange Points (1/2)
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Applications – Lagrange Points (2/2)
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• Points where gravitational pull is balanced

– Exists between all multibody systems

– Sun-Earth Lagrange points most commonly used/considered

• Several current missions either use or will pass L points

– OSIRIS-REx will swing by L4 looking for Earth Trojans

– JWST will orbit L2 to examine early origins of universe

– Solar and Heliospheric Observatory (SOHO) orbits L1



Perturbed Motion – Nongravitational

• Atmospheric Resistance (Drag)

– ҧ𝑓𝐷 = −
1

2
𝜌

𝐶𝐷𝐴

𝑚
𝑣 ҧ𝑣, force of drag acting opposite to movement

– Ballistic coefficient, 
𝐶𝐷𝐴

𝑚
– At low altitudes (~350 km) the atmospheric density is 10−11 of sea level

– Mean free path increases to meters

– Drag removes energy from orbit

– Secular decay in semimajor axis and eccentricity

– Decay in 𝑎 will determine lifetime of satellite

• Some re-entry numbers

– ~170 million pieces of space debris

– Less than 0.2% tracked
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https://www.nesdis.noaa.gov/content/does-space-junk-fall-sky


Perturbed Motion – Nongravitational

• Solar radiation pressure

– Transfer of momentum through photons

𝑓𝑆𝑅𝑃 = −𝑃
𝑣𝐴

𝑚
𝐶𝑅 ത𝑢

– 𝑃 is the momentum flux

– 𝐴 is cross-sectional area

– 𝐶𝑅, reflectivity coefficient

– 𝑣, eclipse factor for when satellite is in shadow
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PREDICT THE ORBIT

Practice problems: The Orbit Problem



Assigned Problems - Overview

• You are given three problems involving orbital motion. They 
have been picked to ensure you have a sufficient understanding 
of orbital mechanics before proceeding. The problems resemble 
numbers 4, 5, 6, 10, 11, and 12 from the textbook. 

• These problems should be complete by Friday, February 8.
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Assigned Problems – Problem 1

• Given the following position and velocity of a satellite

– Expressed in a non-rotating geocentric coordinate system

a) Determine the six orbital elements (a, e, i, Ω, 𝜔, M0)

b) Assuming 𝑋0 is given and two-body motion, predict position and velocity at 𝑡 =
3,000 sec. Determine flight path angle at this time. 

c) Determine the latitude and longitude of the subsatellite point for 𝑡 = 3,000 sec if 𝛼𝐺
at 𝑡 = 0 is 0. Assume the 𝑍 axis of the nonrotating system is coincident with the 𝑧 axis of 
the rotating system. 
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Position (m) Velocity (m/s)

X 7088580.789 -10.20544809

Y -64.326 -522.85385193

Z 920.514 7482.075141



Assigned Problems – Problem 2 (1/2)

• Orbit of CRISTA-SPAS-2

– Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere

The joint venture of DLR and NASA, the small free-flying satellite contains three 
telescopes, four spectrometers, and a GPS receiver on-board. It is deployed 
from the shuttle Discovery on STS-85 in August 1997. Using on-board 
navigation, the receiver measurements are processed in an Earth-centered, 
Earth-fixed coordinate system. 
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August 18, 1997

GPS-T (hrs:min:sec) 00:00:0.000000 00:00:03.000000

x 3325396.441 3309747.175

y 5472597.483 5485240.159

z -2057129.050 -2048664.333

August 19, 1997

GPS-T (hrs:min:sec) 00:00:0.000000 00:00:03.000000

x 4389882.255 4402505.030

y -4444406.953 -4428002.728

z -2508462.520 -2515303.456

https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/sts85


Assigned Problems – Problem 2 (2/2)

a) Demonstrate that the node location is not fixed in space and determine an 
approximate rate of node change (degrees/day) from these positions. 
Compare the node rate with the value predicted by 

ሶΩ = −
3

2
𝐽2

𝑛

1 − 𝑒2 2

𝑎𝑒
𝑎

2

cos 𝑖

b) Determine the inclination of CRISTA-SPAS-2 during the first 3-sec interval 
and the last 3-sec interval. 

Comment: The position vectors determined by GPS in this case are influenced at 
the 100-meter level by Selective Ability, but the error does not significantly 
affect this problem. 
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Assigned Problems – Problem 3 (1/2)

• GLONASS

– Russia’s answer for American GPS

Given a set of initial conditions for a high-altitude GLONASS satellite, 
numerically integrate the equations of motion for one day. 

a) Assuming the satellite is influenced by 𝐽2 only, derive the equations of motion 
in non-rotation coordinates. Assume the nonrotating 𝑍 axis coincides with the 
Earth-fixed 𝑧 axis. 

b) During the integration, compute the Jacobi constant and the 𝑍 component of 
the angular momentum. Are these quantities constant?

c) Plot the six orbital elements as a function of time. 

d) Identify features similar to and different from Fig. 2.3.5
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https://www.glonass-iac.ru/en/GLONASS/


Assigned Problems – Problem 3 (2/2)

e) Compare the node rate predicted by 

ሶΩ = −
3

2
𝐽2

𝑛

1 − 𝑒2 2

𝑎𝑒
𝑎

2

cos 𝑖

with a value estimated from (c). 

f) Compare the amplitude of the semimajor axis periodic term with 

𝑎 𝑡 = ത𝑎 + 3ത𝑛ത𝑎𝐽2
𝑎𝑒
ത𝑎

2

sin2
ҧ𝑖 cos 2𝜔 + 2𝑀

2 ሶ𝜔𝑠 + 2 ሶ𝑀𝑠

g) Plot the ground track. Does the ground track repeat after one day?

33

a e i Ω 𝜔 𝑀0

25500.0 km 0.0015 63 deg -60 deg 0 deg 0 deg


