Statistical Orbit Determination

Lecture 6 – Coordinate Systems and Time Presenter: Christopher R. Simpson

Recap

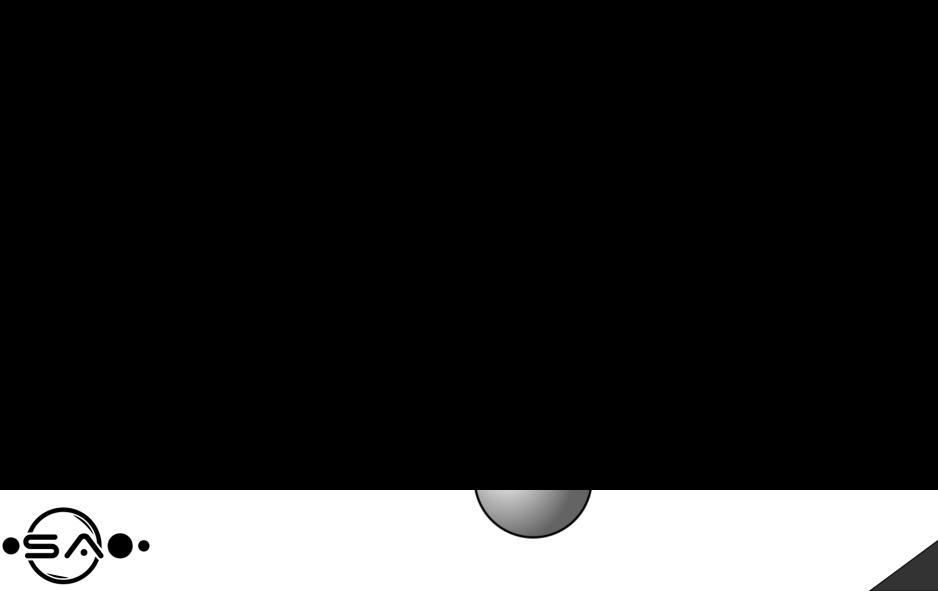
- Lecture 5 Notes posted <u>here</u>
 - Perturbed Motion
- Questions
 - Post them to YouTube page

Agenda

Coordinate Systems and Time: Introduction

- Precession and Nutation
- Earth Rotation and Time
- Earth-Fixed and Topocentric Systems
- Transformation between ECF and ECI
- Orbit Accuracy
- <u>Assigned Problems</u>

Reference Frame – Precession and Nutation



Reference Frame – Rotation and Time (1/5)

- Rotation, ω_\oplus
 - Simplified model is fixed in direction and magnitude
 - Conical CCW motion, full revolution in 430 days, Chandler period
 - The polar motion is confined to $0.6 \ {\rm arcsec} \ {\rm over} \ {\rm decadal}$ time scale
- Changes in magnitude and length of day
 - Change in $\omega_{igoplus}$ means change period required for rev of Earth w/r stars
 - Not w/r to the sun
 - Period change expressed in form of Universal Time, $\Delta(UT1)$
 - Difficult to predict period change
 - Regular observation and reported by International Earth Rotation Service

Reference Frame – Rotation and Time (2/5)

- Estimation of $\Delta(UT1)$
 - Separation of Δ (UT1) from orbit node, Ω , complicates estimation
 - Polar motion and satellite state can be used (GPS and Lageos)
 - Errors in Ω absorbed in estimation of Δ (UT1)
 - Cannot provide reliable long-term estimates of Δ (UT1)
- Time is different
 - Event uniquely identified by local time or Universal Time
 - Epoch J2000.0 is January 1, 2000, 12 hours
- Julian Date (JD)
 - Measured from 4713 b.c. and day begins at noon
 - J2000.0 is JD 2451545.0 days
 - January 1, 2000, 0 hours (midnight) would be JD 2451544.5

Reference Frame – Rotation and Time (3/5)

- Modified Julian Date (MJD)
 - JD minus 2400000.5
 - J2000.0 is MJD 51544.5 day
- Reference time necessary because independent variable
 - Every observation is time tagged using a reference clock
 - Reference clocks use oscillators
 - Typically crystal oscillators used
 - Affected by temperature and some temporal characteristics
 - High accuracy uses atomic frequencies

Reference Frame – Rotation and Time (4/5)

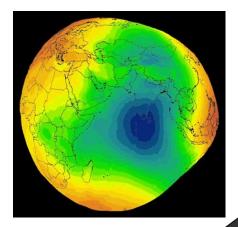
- Various time systems
 - Terrestial Dynamical Time (TDT)
 - Used for Earth satellites
 - Also known as terrestrial time (TT)
 - Barycentric Dynamical Time (TDB)
 - Used for solar system applications
 - International Atomic Time (TAI)
 - Both TDT and TDB related to TAI at a specified epoch
 - Based on cesium atomic clocks
 - Universal Time
 - Measure of time that is basis for all civil time-keeping
 - Coordinated Universal Time (UTC) derived from TAI where UT1 = UTC + Δ (UT1)
 - UTC maintained by NIST and USNO
 - UTC(USNO) and TAI based on ensemble of cesium oscillators and hydrogen masers

Reference Frame – Rotation and Time (5/5)

- Difference between time systems
 - UTC needs leap seconds to maintain synchronization
 - UTC and Δ (UT1) require leap seconds for synchronization within ± 0.9 seconds
 - Constant difference between TAI and TT
 - TT TAI = 32.184 seconds
 - TDB and TT difference is periodic function, relativistic effect
 - GPS time (GPS-T) related to TAI
 - Leap second adjustments applied to UTC are not used in GPS-T
 - Current leap second separation is 37.0 seconds as of Jan 1, 2017

Reference Frame – EF and Topocentric (1/3)

- Earth-fixed and topocentric systems
 - Earth-fixed frame not defined since not a rigid body
 - Mass deformation of luni-solar gravity changes coordinates on surface
 - True Earth-fixed frame does not exist
 - Terrestrial Reference Frame (TRF)
 - Origin is coincident with center of mass
 - "Attached," x-axis approx. coincident with Greenwich meridian
 - z-axis approx. coincident with ω_\oplus
 - International Earth Rotation Service TRF or ITRF
 - WGS-84, used with many GPS applications



Reference Frame – EF and Topocentric (2/3)

- Ellipsoid of revolution not sphere
 - Spherical coordinates used to describe gravitational potential

$$x = r \cos \phi \cos \lambda$$
$$y = r \cos \phi \sin \lambda$$
$$z = r \sin \phi$$

- ϕ , geocentric latitude, λ , longitude, and r is magnitude of pos vector
- Alternate set used with ellipsoid
 - Geodetic latitude, ϕ' , longitude, λ , and height above ellipsoid, h $x = (N_h + h) \cos \phi' \cos \lambda$ $y = (N_h + h) \cos \phi' \sin \lambda$ $z = (N_h + h - \bar{e}^2 N_h) \sin \phi'$
 - Where eccentricity of the elliptical cross-section is

$$\bar{e}^2 = \bar{f}(2-\bar{f})$$
$$N_h = \frac{R_e}{(1-\bar{e}^2\sin^2\phi')^{1/2}}$$

$$\bar{f} = \frac{R_e - R_p}{R_e}$$

Reference Frame – EF and Topocentric (3/3)

- Topocentric
 - Northward, Eastward, local vertical point on a surface
 - x_t eastward, y_t northward, z_t local vertical
 - Earth-fixed in terms of topocentric system is

$$\bar{r}_t = T_t(\bar{r} - \bar{r}_s) = T_t\bar{\rho}$$

$$T_t = \begin{bmatrix} -\sin\lambda & \cos\lambda & 0\\ -\sin\phi\cos\lambda & -\sin\phi\sin\lambda & \cos\phi\\ \cos\phi\cos\lambda & \cos\phi\sin\lambda & \sin\phi \end{bmatrix}$$

- Elevation and Azimuth

$$\sin(El) = \frac{z_t}{r_t} \quad -90^\circ \le El \le 90^\circ$$

$$\sin(Az) = \frac{x_t}{r_{xy}} \quad 0 \le Az \le 360^\circ$$
$$\cos(Az) = \frac{y_t}{r_{xy}}$$

Reference Frame – Transform ECF and ECI

- Transform between ECF and ECI systems
 - Transformation matrix between ECF to J2000 system is complex
 - Must consider precession, nutation, polar motion, and UT1 $T_{XYZ}^{\mathcal{XYZ}} = WS'NP$
 - Where the transformation is from J2000 to ECF,
 - P applies to precession from epoch to current time
 - N applies nutation at current time
 - S' applies rotation to account for true sidereal time
 - W applies polar motion to align the z axis (true pole) with the pole of the ECF system

Orbit Accuracy

- Orbit accuracy
 - Accuracy of solution of EOM with parameters in model of forces
 - General perturbation technique concerned with small parameters
 - Special perturbation technique concerned with step size
 - Solution technique accuracy
 - Error introduced in the solution of the equations of motion by the solution technique
 - No consideration given to the accuracy of the parameters in the equations
 - Force model accuracy
 - Parameters in force models and modeling of forces most significant error source
 - All parameters in force model have been determined by some means
 - Specification of requirement
 - Equations of motion distinctly different if orbit must be determined with cm vs km accuracy

Practice problems: The Orbit Problem

PREDICT THE ORBIT

Assigned Problems - Overview

- You are given three problems involving orbital motion. They have been picked to ensure you have a sufficient understanding of orbital mechanics before proceeding. The problems resemble numbers 4, 5, 6, 10, 11, and 12 from the textbook.
- These problems should be complete by Friday, February 8.

Assigned Problems – Problem 1

Given the following position and velocity of a satellite

	Position (m)	Velocity (m/s)
 Х	7088580.789	-10.20544809
Y	-64.326	-522.85385193
Z	920.514	7482.075141

- Expressed in a non-rotating geocentric coordinate system

a) Determine the six orbital elements (a, e, i, Ω , ω , M_0)

b) Assuming X_0 is given and two-body motion, predict position and velocity at t = 3,000 sec. Determine flight path angle at this time.

c) Determine the latitude and longitude of the subsatellite point for t = 3,000 sec if α_G at t = 0 is 0. Assume the Z axis of the nonrotating system is coincident with the z axis of the rotating system.

Assigned Problems – Problem 2 (1/2)

- Orbit of CRISTA-SPAS-2
 - Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere

The joint venture of DLR and NASA, the small free-flying satellite contains three telescopes, four spectrometers, and a GPS receiver on-board. It is deployed from the shuttle Discovery on STS-85 in August 1997. Using on-board navigation, the receiver measurements are processed in an Earth-centered, Earth-fixed coordinate system.

August 18, 1997								
00:00:0.000000	00:00:03.000000							
3325396.441	3309747.175							
5472597.483	5485240.159							
-2057129.050	-2048664.333							
August 19, 1997								
00:00:0.000000	00:00:03.000000							
4389882.255	4402505.030							
-4444406.953	-4428002.728							
-2508462.520	-2515303.456							
	00:00:0.000000 3325396.441 5472597.483 -2057129.050 August 19, 1997 00:00:0.000000 4389882.255 -4444406.953							

a) Demonstrate that the node location is not fixed in space and determine an approximate rate of node change (degrees/day) from these positions. Compare the node rate with the value predicted by

$$\dot{\Omega} = -\frac{3}{2}J_2 \frac{n}{(1-e^2)^2} \left(\frac{a_e}{a}\right)^2 \cos i$$

b) Determine the inclination of CRISTA-SPAS-2 during the first 3-sec interval and the last 3-sec interval.

Comment: The position vectors determined by GPS in this case are influenced at the 100-meter level by Selective Ability, but the error does not significantly affect this problem.

Assigned Problems – Problem 3 (1/2)

GLONASS

- Russia's answer for American GPS

Given a set of initial conditions for a high-altitude GLONASS satellite, numerically integrate the equations of motion for one day.

a) Assuming the satellite is influenced by J_2 only, derive the equations of motion in non-rotation coordinates. Assume the nonrotating Z axis coincides with the Earth-fixed z axis.

b) During the integration, compute the Jacobi constant and the Z component of the angular momentum. Are these quantities constant?

c) Plot the six orbital elements as a function of time.

d) Identify features similar to and different from Fig. 2.3.5

Assigned Problems – Problem 3 (2/2)

e) Compare the node rate predicted by

$$\dot{\Omega} = -\frac{3}{2}J_2 \frac{n}{(1-e^2)^2} \left(\frac{a_e}{a}\right)^2 \cos i$$

with a value estimated from (c).

f) Compare the amplitude of the semimajor axis periodic term with $a(t) = \bar{a} + 3\bar{n}\bar{a}J_2 \left(\frac{a_e}{\bar{a}}\right)^2 \sin^2 \frac{\bar{\iota}(\cos(2\omega + 2M))}{2\dot{\omega}_s + 2\dot{M}_s}$

g) Plot the ground track. Does the ground track repeat after one day?

a	е	i	Ω	ω	M ₀
25500.0 km	0.0015	63 deg	-60 deg	0 deg	0 deg

