Statistical Orbit Determination

Lecture 6 - Coordinate Systems and Time
Presenter: Christopher R. Simpson

Recap

- Lecture 5 - Notes posted here
- Perturbed Motion
- Questions
- Post them to YouTube page

Agenda

- Coordinate Systems and Time: Introduction
- Precession and Nutation
- Earth Rotation and Time
- Earth-Fixed and Topocentric Systems
- Transformation between ECF and ECI
- Orbit Accuracy
- Assigned Problems

Reference Frame - Rotation and Time (1/5)

- Rotation, ω_{\oplus}
- Simplified model is fixed in direction and magnitude
- Conical CCW motion, full revolution in 430 days, Chandler period
- The polar motion is confined to 0.6 arcsec over decadal time scale
- Changes in magnitude and length of day
- Change in ω_{\oplus} means change period required for rev of Earth w / r stars
- Not w/r to the sun
- Period change expressed in form of Universal Time, Δ (UT 1)
- Difficult to predict period change
- Regular observation and reported by International Earth Rotation Service

Reference Frame - Rotation and Time (2/5)

- Estimation of Δ (UT1)
- Separation of Δ (UTI) from orbit node, Ω, complicates estimation
- Polar motion and satellite state can be used (GPS and Lageos)
- Errors in Ω absorbed in estimation of Δ (UT1)
- Cannot provide reliable long-term estimates of Δ (UT1)
- Time is different
- Event uniquely identified by local time or Universal Time
- Epoch J2000.0 is January 1, 2000, 12 hours
- Julian Date (JD)
- Measured from 4713 b.c. and day begins at noon
- J2000.0 is JD 2451545.0 days
- January 1, 2000, 0 hours (midnight) would be JD 2451544.5

Reference Frame - Rotation and Time (3/5)

- Modified Julian Date (MJD)
- JD minus 2400000.5
- J2000.0 is MJD 51544.5 day
- Reference time necessary because independent variable
- Every observation is time tagged using a reference clock
- Reference clocks use oscillators
- Typically crystal oscillators used
- Affected by temperature and some temporal characteristics
- High accuracy uses atomic frequencies

Reference Frame - Rotation and Time (4/5)

- Various time systems
- Terrestial Dynamical Time (TDT)
- Used for Earth satellites
- Also known as terrestrial time (TT)
- Barycentric Dynamical Time (TDB)
- Used for solar system applications
- International Atomic Time (TAI)
- Both TDT and TDB related to TAI at a specified epoch
- Based on cesium atomic clocks
- Universal Time
- Measure of time that is basis for all civil time-keeping
- Coordinated Universal Time (UTC) derived from TAI where UT1 = UTC $+\Delta$ (UT1)
- UTC maintained by NIST and USNO
- UTC(USNO) and TAI based on ensemble of cesium oscillators and hydrogen masers

Reference Frame - Rotation and Time (5/5)

- Difference between time systems
- UTC needs leap seconds to maintain synchronization
- UTC and Δ (UT1) require leap seconds for synchronization within ± 0.9 seconds
- Constant difference between TAI and TT
- TT - TAI $=32.184$ seconds
- TDB and TT difference is periodic function, relativistic effect
- GPS time (GPS-T) related to TAI
- Leap second adjustments applied to UTC are not used in GPS-T
- Current leap second separation is 37.0 seconds as of Jan 1, 2017

Reference Frame - EF and Topocentric (1/3)

- Earth-fixed and topocentric systems
- Earth-fixed frame not defined since not a rigid body
- Mass deformation of luni-solar gravity changes coordinates on surface
- True Earth-fixed frame does not exist
- Terrestrial Reference Frame (TRF)
- Origin is coincident with center of mass
- "Attached," x-axis approx. coincident with Greenwich meridian
- z-axis approx. coincident with ω_{\oplus}
- International Earth Rotation Service TRF or ITRF
- WGS-84, used with many GPS applications

Reference Frame - EF and Topocentric (2/3)

- Ellipsoid of revolution not sphere
- Spherical coordinates used to describe gravitational potential

$$
\begin{gathered}
x=r \cos \phi \cos \lambda \\
y=r \cos \phi \sin \lambda \\
z=r \sin \phi
\end{gathered}
$$

- ϕ, geocentric latitude, λ, longitude, and r is magnitude of pos vector
- Alternate set used with ellipsoid
- Geodetic latitude, ϕ^{\prime}, longitude, λ, and height above ellipsoid, h

$$
\begin{gathered}
x=\left(N_{h}+h\right) \cos \phi^{\prime} \cos \lambda \\
y=\left(N_{h}+h\right) \cos \phi^{\prime} \sin \lambda \\
z=\left(N_{h}+h-\bar{e}^{2} N_{h}\right) \sin \phi^{\prime}
\end{gathered}
$$

- Where eccentricity of the elliptical cross-section is

$$
\begin{gathered}
\bar{e}^{2}=\bar{f}(2-\bar{f}) \\
N_{h}=\frac{R_{e}}{\left(1-\bar{e}^{2} \sin ^{2} \phi^{\prime}\right)^{1 / 2}} \\
\bar{f}=\frac{R_{e}-R_{p}}{R_{e}} \\
x^{2}+y^{2}+\left(\frac{R_{e}}{R_{p}}\right)^{2} z^{2}=R_{e}^{2}
\end{gathered}
$$

Reference Frame - EF and Topocentric (3/3)

- Topocentric
- Northward, Eastward, local vertical point on a surface
- x_{t} eastward, y_{t} northward, z_{t} local vertical
- Earth-fixed in terms of topocentric system is

$$
\bar{r}_{t}=T_{t}\left(\bar{r}-\bar{r}_{s}\right)=T_{t} \bar{\rho}
$$

$$
T_{t}=\left[\begin{array}{ccc}
-\sin \lambda & \cos \lambda & 0 \\
-\sin \phi \cos \lambda & -\sin \phi \sin \lambda & \cos \phi \\
\cos \phi \cos \lambda & \cos \phi \sin \lambda & \sin \phi
\end{array}\right]
$$

- Elevation and Azimuth

$$
\begin{aligned}
& \sin (E l)=\frac{z_{t}}{r_{t}} \quad-90^{\circ} \leq E l \leq 90^{\circ} \\
& \sin (A z)=\frac{x_{t}}{r_{x y}} \quad 0 \leq A z \leq 360^{\circ} \\
& \cos (A z)=\frac{y_{t}}{r_{x y}}
\end{aligned}
$$

Reference Frame - Transform ECF and ECI

- Transform between ECF and ECl systems
- Transformation matrix between ECF to J2000 system is complex
- Must consider precession, nutation, polar motion, and UT 1

$$
T_{X Y Z}^{x y Z}=W S^{\prime} N P
$$

- Where the transformation is from J2000 to ECF,
- P applies to precession from epoch to current time
- N applies nutation at current time
- S^{\prime} applies rotation to account for true sidereal time
- W applies polar motion to align the z axis (true pole) with the pole of the ECF system

Orbit Accuracy

- Orbit accuracy

- Accuracy of solution of EOM with parameters in model of forces
- General perturbation technique concerned with small parameters
- Special perturbation technique concerned with step size
- Solution technique accuracy
- Error introduced in the solution of the equations of motion by the solution technique
- No consideration given to the accuracy of the parameters in the equations
- Force model accuracy
- Parameters in force models and modeling of forces most significant error source
- All parameters in force model have been determined by some means
- Specification of requirement
- Equations of motion distinctly different if orbit must be determined with cm vs km accuracy

Practice problems: The Orbit Problem PREDICT THE ORBIT

Assigned Problems - Overview

- You are given three problems involving orbital motion. They have been picked to ensure you have a sufficient understanding of orbital mechanics before proceeding. The problems resemble numbers $4,5,6,10,11$, and 12 from the textbook.
- These problems should be complete by Friday, February 8.

Assigned Problems - Problem 1

- Given the following position and velocity of a satellite
- Expressed in a non-rotating geocentric coordinate system

	Position (m)	Velocity $(\mathrm{m} / \mathrm{s})$
X	7088580.789	-10.20544809
Y	-64.326	-522.85385193
Z	920.514	7482.075141

a) Determine the six orbital elements ($\mathrm{a}, \mathrm{e}, \mathrm{i}, \Omega, \omega, \mathrm{M}_{0}$)
b) Assuming X_{0} is given and two-body motion, predict position and velocity at $t=$ $3,000 \mathrm{sec}$. Determine flight path angle at this time.
c) Determine the latitude and longitude of the subsatellite point for $t=3,000 \mathrm{sec}$ if α_{G} at $t=0$ is 0 . Assume the Z axis of the nonrotating system is coincident with the Z axis of the rotating system.

Assigned Problems - Problem 2 (1/2)

- Orbit of CRISTA-SPAS-2

- Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere

The joint venture of DLR and NASA, the small free-flying satellite contains three telescopes, four spectrometers, and a GPS receiver on-board. It is deployed from the shuttle Discovery on STS-85 in August 1997. Using on-board navigation, the receiver measurements are processed in an Earth-centered, Earth-fixed coordinate system.

August 18, 1997		
GPS-T (hrs:min:sec)	$00: 00: 0.000000$	$00: 00: 03.000000$
x	3325396.441	3309747.175
y	5472597.483	5485240.159
z	-2057129.050	-2048664.333
	August 19,1997	
GPS-T (hrs:min:sec)	$00: 00: 0.000000$	$00: 00: 03.000000$
x	4389882.255	4402505.030
y	-4444406.953	-4428002.728
z	-2508462.520	-2515303.456

Assigned Problems - Problem 2 (2/2)

a) Demonstrate that the node location is not fixed in space and determine an approximate rate of node change (degrees/day) from these positions.
Compare the node rate with the value predicted by

$$
\dot{\Omega}=-\frac{3}{2} J_{2} \frac{n}{\left(1-e^{2}\right)^{2}}\left(\frac{a_{e}}{a}\right)^{2} \cos i
$$

b) Determine the inclination of CRISTA-SPAS-2 during the first 3-sec interval and the last $3-\mathrm{sec}$ interval.

Comment: The position vectors determined by GPS in this case are influenced at the 100-meter level by Selective Ability, but the error does not significantly affect this problem.

Assigned Problems - Problem 3 (1/2)

- GLONASS

- Russia's answer for American GPS

Given a set of initial conditions for a high-altitude GLONASS satellite, numerically integrate the equations of motion for one day.
a) Assuming the satellite is influenced by J_{2} only, derive the equations of motion in non-rotation coordinates. Assume the nonrotating Z axis coincides with the Earth-fixed z axis.
b) During the integration, compute the Jacobi constant and the Z component of the angular momentum. Are these quantities constant?
c) Plot the six orbital elements as a function of time.
d) Identify features similar to and different from Fig. 2.3.5

Assigned Problems - Problem 3 (2/2)

e) Compare the node rate predicted by

$$
\dot{\Omega}=-\frac{3}{2} J_{2} \frac{n}{\left(1-e^{2}\right)^{2}}\left(\frac{a_{e}}{a}\right)^{2} \cos i
$$

with a value estimated from (c).
f) Compare the amplitude of the semimajor axis periodic term with

$$
a(t)=\bar{a}+3 \bar{n} \bar{a} j_{2}\left(\frac{a_{e}}{\bar{a}}\right)^{2} \sin ^{2} \frac{\bar{l}(\cos (2 \omega+2 M))}{2 \dot{\omega}_{s}+2 \dot{M}_{s}}
$$

g) Plot the ground track. Does the ground track repeat after one day?

a	e	i	Ω	ω	M_{0}
25500.0 km	0.0015	63 deg	-60 deg	0 deg	0 deg

