Statistical Orbit Determination

Lecture 8 - Simulating Ideal Measurements
Presenter: Christopher R. Simpson

Recap

- Lecture 7 - Notes posted here
- Ideal and Conceptual Measurements
- Questions
- Post them to YouTube page

Agenda

- Ideal Observations
- Ideal range
- Ideal range rate
- Simulating observations
- Conceptual Measurement Systems
- Range
- Range Rate

Ideal Observations - Range

- Ideal Range
- Ideal means ignore propagation
- Instantaneous range or geometric range
- Propagation and other errors captured in the observed range
- Difference between instrument and satellite position vector

$$
\rho=\left[\left(\bar{r}-\bar{r}_{I}\right) \cdot\left(\bar{r}-\bar{r}_{I}\right)\right]^{1 / \dot{2}}
$$

- Observed range,

$$
\rho_{o b s}=\rho+\epsilon
$$

- Geometric range is invariant between different frames
- ρ will be identical between both ECF and J2000
- Magnitude of difference in position vectors

$$
\begin{aligned}
& \rho=\left[\left(X-X_{I}\right)^{2}+\left(Y-Y_{I}\right)^{2}+\left(Z-Z_{I}\right)^{2}\right]^{1 / 2} \\
& \rho=\left[\left(x-x_{I}\right)^{2}+\left(y-y_{I}\right)^{2}+\left(z-z_{I}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

Ideal Observations - Range rate

- Ideal range rate
- Differentiating the range with respect to time

$$
\begin{gathered}
\dot{\rho}=\frac{\bar{\rho} \cdot \dot{\bar{\rho}}}{\rho} \\
\rho=\left[\left(X-X_{I}\right)\left(\dot{X}-\dot{X}_{I}\right)+\left(Y-Y_{I}\right)\left(\dot{Y}-\dot{Y}_{I}\right)+\left(Z-Z_{I}\right)\left(\dot{Z}-\dot{Z}_{I}\right)\right] / \rho
\end{gathered}
$$

- Relative velocity in direction defined by ρ
- Range-rate is the component of the relative velocity between the observing instrument and the satellite in the line-of-sight direction

$$
\dot{\rho}_{o b s}=\dot{\rho}+\epsilon
$$

- Azimuth and elevation

$$
\begin{aligned}
& \sin (E l)=\frac{z_{t}}{r_{t}} \quad-90^{\circ} \leq E l \leq 90^{\circ} \\
& \sin (A z)=\frac{x_{t}}{r_{x y}} \quad 0 \leq A z \leq 360^{\circ} \\
& \cos (A z)=\frac{y_{t}}{r_{x y}}
\end{aligned}
$$

Ideal Observations - Simulated Obs (1/4)

- Simulation of ideal observations
- Set of initial conditions represent the "truth" then simulate observations
- Use geometric range and range rate in this example
- Two sites, Easter Island and Fortaleza, Brazil

Ideal Observations - Simulated Obs (2/4)

- Range from Easter Island and Fortaleza

Ideal Observations - Simulated Obs (3/4)

- Range residuals

Ideal Observations - Simulated Obs (4/4)

- Correct range residuals

