Statistical Orbit Determination

Lecture 10 - Conceptual Example
Presenter: Christopher R. Simpson

Recap

- Lecture 9 - Notes posted here
- Conceptual Measurements
- Questions
- Post them to YouTube page

Agenda

- Example

Examples for range and range-rate MEASUREMENT MODELING

Measurement Modeling - Overview

- Two-way ranging (p. 106)

Consider satellite in equatorial posigrade circular orbit with an altitude of 600 km above a spherical Earth. Assume satellite is 20° in true anomaly past the zenith direction of a two-way ranging station, which places the satellite at 4.3° elevation w / r to the station. Assume a signal is transmitted from the station at $t=0$.

h	e	i	f	$E l$
600 km	0	0 deg	20 deg	4.3 deg

- Range rate

Consider the same satellite with a transmitter beacon. Assume the transmitter is operating in the Ka-band at 24.25 GHz .

- Solution on GitHub

Measurement Modeling - Two-way (1/3)

h	e	i	f	$E l$
600 km	0	0 deg	20 deg	4.3 deg

- Two-way ranging (p. 106)
- Geometry
- Determine ideal range between ground station and satellite
$-\hat{z}_{t} \cdot \bar{r}=\cos 4.3^{\circ}$ and $\left(\hat{z}_{t} \cos i_{g s}\right) \cdot \bar{r}=\cos 20^{\circ}$

$$
\begin{gathered}
\cos i_{g s}\left(\hat{z}_{t} \cdot \bar{r}\right)=\cos 20^{\circ} \\
i_{g s}=\phi= \pm 19.55^{\circ}
\end{gathered}
$$

- Assuming longitude, λ, is 0°
$-\rho(t=0)=2.344 \times 10^{6}$ meters

Measurement Modeling - Two-way (2/3)

h	e	i	f	$E l$
600 km	0	0 deg	20 deg	4.3 deg

- Two-way ranging (p. 106)

$$
\rho_{r t}=c\left(T_{R}-T_{T}\right)+b\left(T_{R}-T_{T}\right)+\delta \rho_{a t m}+\epsilon
$$

- Computed range requires iterative process
- Satellite signal arrival time is unknown

1. Find instantaneous ρ at time t_{T} (assume negligible clock errors)
2. Signal arrival, $t_{a}=t_{T}+\rho / c$
3. New range, $\rho_{n e w}$ at t_{a}, and position of station
4. Compare $\rho_{\text {new }}$ and ρ difference

- Can estimate by halving instaneous range and accounting for speed of light
- Same with altimeter

$$
\begin{gathered}
h_{a v g}=\frac{h_{r t}}{2} \\
t_{a v g}=t_{T}+h_{a v g} / c
\end{gathered}
$$

Measurement Modeling - Two-way (3/3)

- Two-way ranging (p. 106)
- Expected answers

$$
\begin{gathered}
\rho_{t=0}=2343532.4 \text { meters } \\
\rho_{t=0.007817}=2343864.4 \text { meters } \\
\rho_{r t} \approx 4687396.8 \text { meters }
\end{gathered}
$$

Measurement Modeling - Range rate (1/2)

h	e	i	v	$E l$	$f_{T}=f_{G}$
600 km	0	0 deg	20 deg	4.3 deg	24.25 GHz

- Satellite transmits signal with known frequency, f_{T}
- Received signal mixed with reference f_{G}
- Receiver designed to count number of cycles between $t_{R 1}$ and $t_{R 2}$

$$
\begin{gathered}
N_{1,2}=\int_{t_{R 1}}^{t_{R 2}}\left(f_{G}-f_{R}\right) d t \\
N_{1,2}=\left(f_{G}-f_{T}\right)\left(t_{T 2}-t_{T 1}\right)+\frac{f_{G}\left(\rho_{2}-\rho_{1}\right)}{c} \\
\frac{N_{1,2}}{\delta t}=\left(\frac{f_{T}}{c}\right)\left(\frac{\delta \rho}{\delta t}\right)
\end{gathered}
$$

- Received frequency depends on range rate

$$
f_{R}=f_{T}-\frac{N_{1,2}}{\delta t}=f_{T}\left(1-\left(\frac{\delta \rho}{\delta t}\right) / c\right)
$$

Measurement Modeling - Range rate (2/2)

h	e	i	v	$E l$	$f_{T}=f_{G}$
600 km	0	0 deg	20 deg	4.3 deg	24.25 GHz

- Deciding that $\delta t=1 \mathrm{~ms}$
- Doppler count: 133965665.930066
- Received frequency: - 109.715666 GHz
- Apparent frequency is greater than actual frequency.
- The satellite is moving towards the ground station.
- (f_T - f_R) $>f$ _T, (f_T-f_R) $=133.965666 \mathrm{GHz}$
- Range estimate at t_\{R2\}: 9983046.823160

