Statistical Orbit Determination

Lecture 10 – Conceptual Example

Presenter: Christopher R. Simpson

Recap

- Lecture 9 Notes posted <u>here</u>
 - Conceptual Measurements
- Questions
 - Post them to YouTube page

Agenda

• Example

Examples for range and range-rate

MEASUREMENT MODELING

Measurement Modeling - Overview

Two-way ranging (p. 106)

Consider satellite in equatorial posigrade circular orbit with an altitude of 600 km above a spherical Earth. Assume satellite is 20° in true anomaly past the zenith direction of a two-way ranging station, which places the satellite at 4.3° elevation w/r to the station. Assume a signal is transmitted from the station at t=0.

h	е	i	f	El
600 km	0	0 deg	20 deg	4.3 deg

Range rate

Consider the same satellite with a transmitter beacon. Assume the transmitter is operating in the Ka-band at 24.25 GHz.

Solution on GitHub

Measurement Modeling – Two-way (1/3)

- Two-way ranging (p. 106)
 - Geometry
 - Determine ideal range between ground station and satellite

$$\begin{array}{c} -\ \hat{z}_t \cdot \bar{r} = \cos 4.3^\circ \text{ and } \left(\hat{z}_t \cos i_{gs}\right) \cdot \bar{r} = \cos 20^\circ \\ \cos i_{gs} \left(\hat{z}_t \cdot \bar{r}\right) = \cos 20^\circ \\ i_{gs} = \phi = \pm 19.55^\circ \end{array}$$

- Assuming longitude, λ , is 0°
- $\rho(t=0) = 2.344 \times 10^6$ meters

Measurement Modeling – Two-way (2/3)

h	е	i	f	\overline{El}
600 km	0	0 deg	20 deg	4.3 deg

Two-way ranging (p. 106)

$$\rho_{rt} = c(T_R - T_T) + b(T_R - T_T) + \delta\rho_{atm} + \epsilon$$

- Computed range requires iterative process
 - Satellite signal arrival time is unknown
 - 1. Find instantaneous ρ at time t_T (assume negligible clock errors)
 - 2. Signal arrival, $t_a = t_T + \rho/c$
 - 3. New range, ρ_{new} at t_a , and position of station
 - 4. Compare ρ_{new} and ρ difference
 - Can estimate by halving instaneous range and accounting for speed of light
 - Same with altimeter

$$h_{avg} = \frac{h_{rt}}{2}$$

$$t_{avg} = t_T + h_{avg}/c$$

Measurement Modeling – Two-way (3/3)

- Two-way ranging (p. 106)
 - Expected answers

$$ho_{t=0} = 2343532.4 \; {
m meters}$$
 $ho_{t=0.007817} = 2343864.4 \; {
m meters}$ $ho_{rt} pprox 4687396.8 \; {
m meters}$

Measurement Modeling – Range rate (1/2)

h	е	i	ν	El	$f_T = f_G$
600 km	0	0 deg	20 deg	4.3 deg	24.25 GHz

- Satellite transmits signal with known frequency, f_T
- Received signal mixed with reference f_G
 - Receiver designed to count number of cycles between t_{R1} and t_{R2}

$$N_{1,2} = \int_{t_{R1}}^{t_{R2}} (f_G - f_R) dt$$

$$N_{1,2} = (f_G - f_T)(t_{T2} - t_{T1}) + \frac{f_G(\rho_2 - \rho_1)}{c}$$

$$\frac{N_{1,2}}{\delta t} = \left(\frac{f_T}{c}\right) \left(\frac{\delta \rho}{\delta t}\right)$$

Received frequency depends on range rate

$$f_R = f_T - \frac{\dot{N}_{1,2}}{\delta t} = f_T \left(1 - \left(\frac{\delta \rho}{\delta t} \right) / c \right)$$

Measurement Modeling – Range rate (2/2)

h	е	i	ν	El	$f_T = f_G$
600 km	0	0 deg	20 deg	4.3 deg	24.25 GHz

- Deciding that $\delta t = 1$ ms
 - Doppler count: 133965665.930066
 - Received frequency: -109.715666 GHz
 - Apparent frequency is greater than actual frequency.
 - The satellite is moving towards the ground station.
 - $(f_T f_R) > f_T, (f_T f_R) = 133.965666 GHz$
 - Range estimate at t_{R2}: 9983046.823160

