Statistical Orbit Determination

Lecture 12 – Real Measurements Presenter: Christopher R. Simpson

Recap

- Lecture 11 Notes posted <u>here</u>
 - Real Measurements
 - Environment
 - One-Way Range System
- Questions
 - Post them to YouTube page

Agenda

- Environment
 - <u>Atmosphere</u>
 - <u>Relativity</u>
- Measurement systems
 - One way ranging
 - <u>Two way ranging</u>
 - Doppler measurements
 - Differenced measurements

Environment – Atmosphere (1/2)

- Troposphere
 - Refractive to radio
 - Troposphere delay, even though stratosphere 20%
 - $-\delta \rho = 10^{-6} \int N \, ds$, where N is refractivity
 - Dry refractive component contributes 90%
 - $N_d = 77.6(P/T)$ where pressure is in mb
 - $N_w = 3.73 \times 10^5 (e/T^2)$ where e is par. water vapor pressure
 - Dispersive to optical
 - Dependent on elevation

Environment – Atmosphere (2/2)

- Troposphere
 - Dispersive to radio
 - $\delta t = \alpha / f^2$, where α represents TEC
 - α is positive for group delays (psuedorange) and negative for carrier phase
 - Transmitting on two different f removes ionosphere for OD

$$- \rho_c = \gamma_1 \rho_1 - \gamma_2 \rho_2 | \gamma_1 = \frac{f_1^2}{f_1^2 - f_2^2} | \gamma_2 = \frac{f_2^2}{f_1^2 - f_2^2}$$

- No significant effect to optical
- Dependent on TEC
 - Temporal and spatially dependent
 - Starts at 80km and upward

Environment – Relativity

- General Relativity
 - Satellite experience relativistic precession of perigee
 - e = 0, clock beats faster or slower than gnd, dependent on altitude
 - Clock varies w/ same orbital period for $e \neq 0$
 - Still varies about mean frequency
 - Time offset correction, $\Delta t_r = 2\bar{r}\cdot\bar{v}/c^2$
 - Time delay caused by Earth, $\Delta t_{delay} = \frac{2\mu}{c^3} \ln \left[\frac{r_1 + r_2 + \rho}{r_1 + r_2 \rho} \right]$
 - Sagnac effect only concern for high precision clock transfer via sat

Measurement Systems – One Way Range (1/2)

- Global Positioning System (GPS)
 - GPS constellation, 6 orbital planes ($i = 55^{\circ}$), T = 11hr 58min
 - 3 Civil frequencies used
 - L1 and L2 transmit at 1575.42 and 1227.60 MHz, respectively
 - Transmit on carrier frequencies, $154f_0$ and $120f_0$, where $f_0 = 10.23$ MHz
 - Third frequency, L5 is $115f_0$
 - Information superimposed on carrier
 - PRN is transmitted as bits on over carrier
 - Documented determination of bits attaches time to each
 - Cross-correlation with generated signal on ground with received signal
 - Codes transmitted are (C/A, 1023 bits, 1ms), (P, 37 weeks, individual), (Y, AS)

Measurement Systems – One Way Range (2/2)

- Psuedorange measurement from L1 or L2
 - $\tilde{\rho} = \rho + c(\delta t_R \delta t_T) + \delta \rho_{trop} + \delta \rho_{ion} + \epsilon$
 - True range requires true GPS position and receiver coordinates and true times
 - IN practice, may not be known with high accuracy
- Carrier phase gives more precise measurement
 - $\phi = \rho + c(\delta t_R \delta t_T) + \lambda \widetilde{N} + \delta \rho_{trop} \delta \rho_{ion} + \epsilon$
 - ϕ , is measured phase range
 - \widetilde{N} , is integer phase ambiguity

Measurement Systems – Two Way Range (1/2)

- Satellite Laser Ranging (SLR)
 - Automated SLR-2000 system for autonomous concepts
 - TOPEX Poseidon passive reflector
 - 192 quartz corner-cubes mounted in two concentric rings around the altimeter antenna
 - Allows radial position estimate to within 3 cm
- TOPEX/Poseidon altimeter
 - TOPEX uses two frequencies to enable ionosphere correction (13.6 GHz/ 5.3 GHz)
 - Poseidon uses single frequency and other data to correct (13.65 GHz)

Measurement Systems – Two Way Range (2/2)

Measurement Systems – Doppler

• Doppler Systems

Measurement Systems – Differenced

- Differenced Measurements/Differencing
 - Measurements by a particular technique are differenced in special ways
 - Differencing removes or diminishes one or more error sources
 - Most common use
 - GPS pseudorange and carrier phase measurements
 - Altimeter measurements

