Tag Archives: rockets

Autonomous Scheduling for Rapid Responsive Launch of Constellations

The dissertation proposal for “Autonomous Scheduling for Rapid Responsive Launch of Constellations,” by Christopher R. Simpson was successfully defended on 23 March 2020. Regular demonstrations of improvements to the model every two weeks on an agile management framework will be posted to Simpson Aerospace and Christopher R. Simpson’s doctoral committee. The proposal and addendum are available upon request.


Abstract and Presentation

Rapid response airborne launch vehicles can provide the capability to respond to a developing situation anywhere in the world with a nanosatellite overhead in under an hour. This represents an opportunity to provide rapid response for military missions, disaster response, and rapid science return from remote/extreme physical locations. Current capabilities in the denial and tracking of space-assets limits the effectiveness of constellations already on-orbit to be agile in a military response. Constellations on-orbit can take up to a day or more for disaster data return to rescue operations personnel. Remote and rapid science return may help model Arctic cyclones which can only be accurately predicted 24 hours before they occur. To achieve time-sensitive returns from a constellation in Low Earth Orbit (LEO) scheduling algorithms for multiple near-simultaneous launches are proposed. Specifically, a mission planning system for delivery of multiple satellites from multiple similar air-launched platforms for constellation installation over any selected point optimizing for mean response time with constraints on the quality of coverage. The focus is on the scheduling of tactical fighter aircraft with airborne launch vehicles to achieve the minimum response time to fit the mission needs.

Lecture 3 – Orbital Mechanics Review B

If you haven’t already signed up; please submit your email to receive notifications and updates about the course.

[contact-form][contact-field label=”Name” type=”name” required=”1″ /][contact-field label=”Email” type=”email” required=”1″ /][/contact-form]

Lecture

I pick up again by reviewing the solution to the problem assigned during Lecture 1. (The link will take you to a solution using C++ on GitHub). A few common coordinate systems and reference frames are introduced, orbital perturbations are introduced, and an example problem to be solved in Lecture 4 is given to the class to start on.

[youtube https://www.youtube.com/watch?v=FlcF9AoNBUo]

Previous Lectures

Lecture 2

Lecture 1

Resources

Lecture 3 – Review Of Orbital Mechanics B

Lecture 2 – Orbital Mechanics Review A

Lecture 1 – Orbit Determination Concepts (slides)

AppendixA-ProbabilityAndStatistics

Statistical Orbit Determination

If you wish to receive class updates and announcements please submit your email here!

[contact-form][contact-field label=”Email” type=”email” required=”1″ /][/contact-form]

Class time/Preliminary Notes

I will be teaching a statistical orbit determination course this summer. This will be on my own time. All lectures will be posted to YouTube. I will be teaching the course out of Bob Schutz’s, Byron Tapley’s, and George H. Born’s, Statistical Orbit Determination. Feel free to use any textbook you desire but the problems and solutions will be assigned from this text. I have included some precursor notes in question and answer format on statistics and probability below.

AppendixA-ProbabilityAndStatistics

Syllabus

AEM_StatisticalOrbitDetermination_Syllabus_CRS

STATISTICAL ORBIT DETERMINATION

EXECUTIVE SUMMARY:

Orbit Determination (OD) is the problem of determining the best estimate of the state of a spacecraft whose initial state is unknown, from observations influenced by random and systematic errors, using a mathematical model that is not exact. Mordern OD is used to support all space missions from JSpOC’s observations of artificial Earth satellites to the International Space Station’s trajectory planning incorporating elements of probability, statistics, and matrix theory. A special projects class is needed to cover this vital part of the space curriculum that arguably makes the backbone of any space program.

DISCUSSION:

Modern OD approaches have been developed by the NASA Jet Propulsion Laboratory (JPL) to fulfill Earth and planetary navigation requirements and at the NASA Goddard Space Flight Center (GSFC) and the Department of Defense Naval Surface Weapons Center in applications of satellite tracking to problems in geodesy, geodynamics, and oceanography. The Joint Space Operations Center (JSpOC) at Vandenberg Air Force Base, the Conjunction Assessment Risk Analysis (CARA) at GSFC, and Trajectory Operation Officers (TOPO) at Johnson Space Center (JSC) use modern OD techniques in applications of satellite tracking, conjunction assessment, and protecting vital assets from the International Space Station to the National Reconnaissance Office (NRO) spy satellites.

Clearly, OD is an important part of any space mission. The proposed class will use the classical text, Statistical Orbit Determination, by Drs. Byron Tapley, Bob Schutz, and George Born. This basic OD course will cover:

  • Introduction to OD problem
    • Dynamic system and associated state
    • Observations are non-linear functions of state variables
    • Classical well-determined approach
    • Modern over-determined approach
  • Observations to measure satellite motion
    • Ground-based systems: laser, radiometric, etc.
    • Space-based systems: GPS, etc.
    • Error sources and media corrections
  • Non-linear OD reduced to linear state estimation
    • Application of linear system theory
    • Incorporation of algorithms to computational environment
    • Sequential processing of observations
    • Control of real-time processes

This will be supported by background and supplemental information in:

  • Probability and Statistics
  • Review of Matrix Concepts
  • Examples of State Noise and Dynamic Model Compensation
  • Solution of the Linearized Equations of Motion

Students can expect to incorporate their classroom knowledge into real-life by building optical and radiometric sensors supporting The University of Alabama’s new satellite ground station.

LECTURES:

Lecture 1 – Orbit Determination Concepts

Lecture 2 – Orbital Mechanics Review

Post-Flight Analysis Report (PFAR) of RX1

 

SUMMARY:

Christopher R. Simpson built a rocket to pass his Level 1 (L1) certification from the National Association of Rocketry (NAR). The rocket was a kit from Madcow Rocketry; the “Frenzy,” [1]. The RX1 used an Aerotech H550ST-14A, “Super Thunder,” motor with a total impulse of 71.9 lb-sec and a burn time of 0.57 sec. Construction of the rocket, flight, and recovery are reviewed to analyze and critique operations.

Post-Flight Analysis Report (PFAR) attached here: PFAR-RX1 (26 Feb 2018)

YouTube link to flight: https://www.youtube.com/watch?v=Xqff5scf-00

ACKNOWLEDGEMENTS:

A big thank you to Karson Holmes for certifying/critiquing me and William Ledbetter for making the trip to watch the fun take off! Also, a special thanks to Alabama Rocketry for allowing me to use their adapter.

RESOURCES:

Rocket Used: https://www.madcowrocketry.com/4-frenzy/

Motor/Supplier Used: https://csrocketry.com/rocket-motors/aerotech-rocketry/motors/38mm/dms-rocket-motors/aerotech-h550-14a-super-thunder-dms-rocket-motor.html

Alabama Rocketry Facebook Page: https://www.facebook.com/alabamarocketry/

Pheonix Missile Works Facebook Page: https://www.facebook.com/groups/58541022592/