Spring 2019/Lecture 10/Conceptual Example – 18 Feb 2019

Return from recording issues. An example illustrating the previous discussions on real-world limitations of observations is examined.

Sign up for updates here: OD Course Landing Page (Syllabus/Schedule)

Slides: L10 Slides – ConceptualExample

[youtube https://www.youtube.com/watch?v=MYR-0afQKo4&w=560&h=315]

Previous lectures:

 

 

Spring 2019/Lecture 9/Conceptual Measurements – 15 Feb 2019

Return from recording issues. Real-world limitations on ideal observations are discussed. An example illustrating these discussions is prepared for the next lecture.

Sign up for updates here: OD Course Landing Page (Syllabus/Schedule)

Slides: L9 Slides – Conceptual Measurements

Previous lectures:

 

 

Spring 2019/Homework 2 Solution

Demonstrate understanding of orbital mechanics necessary to complete orbit determination course. In problem 1, position and velocity are converted between osculating elements and sub-satellite points. In problem 2, the receiver measurements confirm the node location varies over time. In problem 3 the equations of motion are numerically integrated for a GLONASS satellite for one day.

Sign up for updates here: OD Course Landing Page (Syllabus/Schedule)

GitHub: Repository for Code Used

Previous lectures:

 

 

Spring 2019/Lecture 8/Simulating Ideal Measurements – 13 Feb 2019

Continuing from ideal range and range rate measurements we examine how this applies in the larger context of orbit determination. We use examples to demonstrate real-world application. My apologies again for the difficulties I had bringing this recording to you.

Sign up for updates here: OD Course Landing Page (Syllabus/Schedule)

Slides: L8 Slides – Simulating Ideal Measurements

[youtube https://www.youtube.com/watch?v=FwcqWdBinik&w=560&h=315]

Previous lectures:

 

 

Spring 2019/Lecture 7/Ideal and Conceptual Measurements – 11 Feb 2019

What is an ideal measurement? Specifically what is an ideal range and/or range rate measurement? What’s the difference between observed and computed measurements? Why is it important? My apologies again for the difficulties I had bringing this recording to you.

Sign up for updates here: OD Course Landing Page (Syllabus/Schedule)

Slides: L7 Slides – Ideal and Conceptual Measurements

[youtube https://www.youtube.com/watch?v=BIYy5Ya9tgw&w=560&h=315]

Previous lectures:

 

 

Spring 2019/Lecture 6/Coordinate Systems and Time – 8 Feb 2019

You should have turned in your assignment by this lecture. My apologies for the issues getting the recordings online. We covered different Earth-bound reference frames and timing systems.

Sign up for updates here: OD Course Landing Page (Syllabus/Schedule)

Slides: L6 Slides – Coordinate Systems and Time

[youtube https://www.youtube.com/watch?v=_3TbLZ-8kkw&w=560&h=315]

Previous lectures:

 

 

Spring 2019/Lecture 5/Perturbed Motion – 6 Feb 2019

Sorry for the missed lectures on Friday and Monday. I was out sick. Assignments are due on Friday. We covered perturbations to orbital motion. We examined contributions from gravitational and nongravitational sources to the two-body motion.

Sign up for updates here: https://mailchi.mp/d95b0d174531/odcourse

Slides: L5 Slides – Perturbed Motion

[youtube https://www.youtube.com/watch?v=HZjksLbF4go&w=560&h=315]

Previous lectures:

 

 

Spring 2019/Lecture 4/Two Body Problem – 30 Jan 2019

We resumed today with orbital mechanics. We covered the two-body problem, introduced Kepler’s problem (time doesn’t relate well to true anomaly), and sprinted to the state transition matrix. We will resume with perturbations and additional bodies considered on Friday.

Sign up for updates here: https://mailchi.mp/d95b0d174531/odcourse

Slides: L4 Slides – Two Body Problem

[youtube https://www.youtube.com/watch?v=Mx6PEYk_RQE&w=560&h=315]

Previous lectures:

 

 

Spring 2019/Lecture 3/Problem Solution and Review – 28 Jan 2019

Re-recorded lecture from Monday, January 28. I cover the 2D Uniform Gravitational Field (parabolic trajectory) problem solution. I also reviewed linearization and the state transition matrix because I felt that I didn’t cover them adequately in lecture 1. We will pick back up with additional review of orbital mechanics before moving on to observations.

Sign up for updates here: https://mailchi.mp/d95b0d174531/odcourse

The problem solution can be found on GitHub at https://github.com/simpsonchristo/Soln-HW1-SimpsonAerospace.

The pdf write-up of the solution and the slides can be found here:

Write-up: soln_hw1

Slides: 3-problemsolutionlinearization_spring2019

[youtube https://www.youtube.com/watch?v=8oFZBRa2yp8&w=560&h=315]